版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届临沂市数学八下期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中,可以抽象为中心对称图形的是()A. B.C. D.2.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.73.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A. B.C. D.4.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.5.如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为()A.4 B.6 C.8 D.106.下面二次根式中,是最简二次根式的是()A. B. C. D.7.如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A. B.C. D.8.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n9.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤210.下列方程没有实数根的是()A.x3+2=0 B.x2+2x+2=0C.=x﹣1 D.=011.下列各点中,在函数y=-图象上的是()A. B. C. D.12.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A. B. C. D.二、填空题(每题4分,共24分)13.如图甲,在所给方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在格点处)请将图乙中的▱ABCD分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.14.在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.15.用科学记数法表示:__________________.16.分解因式:2m2-8=_______________.17.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.18.若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)三、解答题(共78分)19.(8分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?20.(8分)如图1,在△ABC中,∠BAC=90°,AB=AC,在△ABC内部作△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.(1)证明:AE=EF;(2)判断线段AF,AE的数量关系,并证明你的结论;(3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由21.(8分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.22.(10分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?23.(10分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF24.(10分)已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求四边形AGBD的面积.25.(12分)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE求证:四边形BECD是矩形.26.如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据中心对称图形的概念求解.【题目详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误。故选:B.【题目点拨】此题考查中心对称图形,难度不大.2、B【解题分析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题3、A【解题分析】根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.故选A.4、D【解题分析】
本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【题目详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:故选:D.【题目点拨】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.5、C【解题分析】
此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.【题目详解】由图可知经过两次折叠后,GB=FG-BF=FG-(10-FG)=2BF=EC=10-FG=4,∵FG∥EC,∴△GBH∽△ECH∴∵GB=2,EC=4,∴CH=2BH,∵BC=BH+CH=6,∴CH=4,∴S△ECH=EC×CH=×4×4=8.故选C【题目点拨】此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.6、C【解题分析】
根据最简二次根式的概念进行判断即可.【题目详解】A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选C.【题目点拨】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.7、B【解题分析】
比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.【题目详解】解:k>0时,一次函数y=﹣kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,选项B符合;k<0时,一次函数y=﹣kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无选项符合.故选:B.【题目点拨】考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8、D【解题分析】
根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【题目详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.9、B【解题分析】
直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.【题目详解】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.【题目点拨】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.10、B【解题分析】
根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.【题目详解】A、x3+2=0,x3=﹣2,x=﹣,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C、=x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B.【题目点拨】本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.11、C【解题分析】
把各点代入解析式即可判断.【题目详解】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.【题目点拨】此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.12、A【解题分析】
解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE•BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.故选A.【题目点拨】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.二、填空题(每题4分,共24分)13、详见解析【解题分析】
直接利用网格结合全等三角形的判定方法得出答案.【题目详解】解:如图所示:③与④全等;②与⑥全等;⑤与①全等.【题目点拨】此题主要考查了平行四边形的性质以及全等三角形的判定,正确应用网格是解题关键.14、或2【解题分析】
四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠BED=120°算出即可【题目详解】画出示意图,分别讨论A,E在同侧和异侧的情况,∵四边形ABCD为菱形,∠A=60,BD=3,∴△ABD为边长为3等边三角形,则AO=,∵∠BED=120°,则∠OBE=30°,可得OE=,则AE=,同理可得OE’=,则AE’=,所以AE的长度为或【题目点拨】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15、【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】故答案为.【题目点拨】此题考查科学记数法,解题关键在于掌握一般形式.16、2(m+2)(m-2)【解题分析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【题目详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【题目点拨】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.17、75【解题分析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.18、①③【解题分析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.【题目详解】解:,函数,y随x的增大而增大,故①正确,②错误;当时,,故③正确,④错误.故答案为:①③.【题目点拨】本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.三、解答题(共78分)19、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.【解题分析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;
(3)结合(2)中的数据进行计算.【题目详解】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得
,
解得
,
所以,20×(10-200)+10×(200-160)=1400(元).
答:橱具店在该买卖中赚了1400元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,依题意得
,
解得
22≤a≤1.
又∵a为正整数,∴a可取23,24,1.
故有三种方案:①防购买电饭煲23台,则购买电压锅27台;
②购买电饭煲24台,则购买电压锅26台;
③购买电饭煲1台,则购买电压锅1台.
(3)设橱具店赚钱数额为W元,
当a=23时,W=23×(10-200)+27×(200-160)=2230;
当a=24时,W=24×(10-200)+26×(200-160)=2240;
当a=1时,W=1×(10-200)+1×(200-160)=210;
综上所述,当a=1时,W最大,此时购进电饭煲、电压锅各1台.【题目点拨】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.20、(1)证明见解析;(2)AF=AE.证明见解析;(3)AF=AE成立.证明见解析.【解题分析】
(1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;(2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=AE;(3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.【题目详解】(1)如图1,∵△ABC中,∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∵∠CED=90°,E在BC上,D在AC上,∴△CDE是等腰直角三角形,∴CE=CD,∵四边形ABFD是平行四边形,∴DF=AB=AC,∵平行四边形ABFD中,AB∥DF,∴∠CDF=∠CAB=90°,∵∠C=∠CDE=45°,∴∠FDE=45°=∠C,在△ACE和△FDE中,,∴△ACE≌△FDE(SAS),∴AE=EF;(2)AF=AE.证明:如图1,∵AB∥DF,∠BAD=90°,∴∠ADF=90°,∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,∵△ACE≌△FDE,∴∠DAE=∠DFE,∴∠DFE+∠EAF+∠AFD=90°,即△AEF是直角三角形,又∵AE=FE,∴△AEF是等腰直角三角形,∴AF=AE;(3)AF=AE仍成立.证明:如图2,延长FD交AC于K.∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC,在△EDF和△ECA中,,∴△EDF≌△ECA(SAS),∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【题目点拨】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.21、(1)见解析;(2)-1.【解题分析】
(1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.
(2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.【题目详解】解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,
∴对于任意实数m,方程总有两个不相等的实数根.
(2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,
解得:m=2,
当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,
解得:x1=-1,x2=3,
∴方程的另一根为-1.
方法二:设方程的另一个根为a,
则3a=-3,
解得:a=-1,
即方程的另一根为-1.【题目点拨】本题考查了根的判别式及根与系数的关系,掌握x1+x2=-,x1•x2=与判别式的值与方程的解得个数的关系是解题的关键.22、(1)A,B单价分别是360元,540元;(2)34件.【解题分析】
(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【题目详解】解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥,因此,A种型号健身器材至少购买34套.【题目点拨】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.23、见解析【解题分析】
根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.【题目详解】证明:∵四边形ABCD是平行四边形,
且E、F分别是BC、AD上的点,
∴AF=EC,
又∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥EC.
∴四边形AFCE是平行四边形,
∴AE=CF.【题目点拨】本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术职业学院招标文件延长公告
- 中原地产房屋买卖合同问答
- 标准砖块采购合同样本
- 进口购销合同
- 盾构工程分包合同劳务
- 方式选购协议案例
- 互联网服务合同协议
- 家电行业联盟合同
- 产权房屋买卖合同范本模板
- 酒精制品购销合同
- 小工 日工劳务合同范本
- 幼儿园教师职称五套试题及答案
- 广东2024年广东省通信管理局局属单位招聘笔试历年典型考题及考点附答案解析
- 报告文学研究
- 弃土综合利用协议
- 幼儿园中班语言课件:《小花猫交朋友》
- SH/T 3065-2024 石油化工管式炉急弯弯管工程技术规范(正式版)
- 2024年《艺术概论》知识考试题库(附答案)
- GB/T 43878-2024旋挖钻机截齿
- 摊位安全责任书
- 《纸质文物修复与保护》课件-03纸质文物病害类型
评论
0/150
提交评论