版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京市江北新区数学八年级第二学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.当x=2时,函数y=-x2+1的值是()A.-2 B.-1 C.2 D.32.若一个正多边形的一个外角是30°,则这个正多边形的边数是()A.9 B.10 C.11 D.123.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:节水量x/t0.5~x~1.51.5~x~2.52.5~x~3.53.5~x~4.5人数6482请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t4.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是A.①②③ B.②③④ C.①② D.②③5.若a≤1,则(1-a)3A.(a-1)a-1 B.(1-a)a-1 C.(a-1)6.如图,两个正方形的面积分别为,,两阴影部分的面积分别为,(),则等于().A. B. C. D.7.如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为().A.17 B.16 C.15 D.148.下列说法错误的是()A.当时,分式有意义 B.当时,分式无意义C.不论取何值,分式都有意义 D.当时,分式的值为09.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一 B.方案二 C.方案三 D.方案四10.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,12二、填空题(每小题3分,共24分)11.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.12.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y=2x与线段AB有公共点,则n的取值范围是____________.13.使函数有意义的的取值范围是________.14.如图,利用函数图象可知方程组的解为______.15.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC;②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).16.方程2x+10-x=1的根是______17.函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.18.如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.三、解答题(共66分)19.(10分)如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①.①判断∠1与∠2的大小关系,并说明理由;②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;(2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.20.(6分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.21.(6分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.22.(8分)如图,在中,E点为AC的中点,且有,,,求DE的长.23.(8分)如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;(3)连接AO、BO,求△ABO的面积;(4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.24.(8分)如图,将一矩形纸片OABC放在平面直角坐标系中,,,.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=____________,OQ=____________;(用含t的代数式表示)(2)当时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形PABD有交点时,求b的取值范围.25.(10分)如图,在中,,,,点、分别在,上,连接.(1)将沿折叠,使点落在边上的点处,如图1,若,求的长;(2)将沿折叠,使点落在边上的点处,如图2,若.①求的长;②求四边形的面积;(3)若点在射线上,点在边上,点关于所在直线的对称点为点,问:是否存在以、为对边的平行四边形,若存在,求出的长;若不存在,请说明理由.26.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
把x=2代入函数关系式进行计算即可得解.【题目详解】x=2时,y=−×22+1=−1.故选:B.【题目点拨】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.2、D【解题分析】
首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.【题目详解】根据题意正多边形的一个外角是30°它的内角为:所以根据正多边形的内角公式可得:可得故选D.【题目点拨】本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.3、B【解题分析】利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量==2.3,
∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.
故选B.4、C【解题分析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.【题目详解】①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=∴四边形A5B5C5D5的周长是2×;故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.故④正确;
综上所述,②③④正确.
故选C.【题目点拨】考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.5、D【解题分析】
将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.【题目详解】若a≤1,有1﹣a≥0;则(1-a)3=(1-a)2故选D.【题目点拨】本题考查了二次根式的意义与化简.二次根式a2规律总结:当a≥0时,a2=a;当a≤0时,6、A【解题分析】
设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【题目详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【题目点拨】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.7、B【解题分析】
根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.【题目详解】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=BF=6∴AO=∴AE=2AO=16故选B.【题目点拨】本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.8、C【解题分析】
分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.【题目详解】解:A选项当,即时,分式有意义,故A正确;B选项当,即时,分式无意义,故B正确;C选项当,即时,分式有意义,故C错误;D选项当,且即时,分式的值为0,故D正确.故选C.【题目点拨】本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.9、D【解题分析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【题目详解】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【题目点拨】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.10、D【解题分析】试题分析:A、∵62+82=102考点:勾股数.二、填空题(每小题3分,共24分)11、1【解题分析】解:由图象可得出:行驶160km,耗油(35﹣25)=10(升),∴行驶240km,耗油×10=15(升),∴到达乙地时邮箱剩余油量是35﹣15=1(升).故答案为1.12、【解题分析】
由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【题目详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴.故答案为:.【题目点拨】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.13、且【解题分析】
根据被开方数是非负数且分母不能为零,可得答案.【题目详解】解:由题意,得解得x>-3且.
故答案为:x>-3且.【题目点拨】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.14、【解题分析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【题目详解】观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组的解为,故答案为:【题目点拨】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.15、①②③.【解题分析】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;【题目详解】①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确,②∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,∴△ABM≌△NGF;故②正确;③∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a1+b1=AM1,∴S四边形AMFN=AM1=a1+b1;故③正确故答案为①②③.【题目点拨】本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.16、x=3【解题分析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.【题目详解】解:整理得:2x+10=x+1,方程两边平方,得:2x+10=x2+2x+1,移项合并同类项,得:x2=9,解得:x1=3,x2=-3,经检验,x2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【题目点拨】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.17、上1.【解题分析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【题目详解】解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.故答案为:上,1.【题目点拨】本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.18、x<-2【解题分析】【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.【题目详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.所以,的解集为x<-2.故答案为x<-2【题目点拨】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.三、解答题(共66分)19、(1)①∠1=∠2,理由见解析,②证明见解析;(2)①BE=CD+CF,②CF=CD+BE.【解题分析】
(1)①由等边三角形的性质和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;②由条件易得四边形BCFM为平行四边形,得到BM=CF,BC=MF,再证明△MEF≌△CDA,得到ME=CD,利用等量代换即可得证;(2)①过F作FH∥BC,易得四边形BCFH为平行四边形,可得HF=BC,BH=CF,然后证明△EFH≌△DAC,得到CD=EH,利用等量代换即可得BE=CD+CF;②过E作EG∥BC,易得四边形BCGE为平行四边形,可得EG=BC,BE=CG,然后证明△EFG≌△ADC,得到CD=FG,利用等量代换即可得CF=CD+BE.【题目详解】(1)①∠1=∠2,理由如下:∵△ABC为等边三角形∴∠ACB=60°∴∠2+∠ADC=120°又∵∠AND=60°∴∠1+∠ADC=120°∴∠1=∠2②∵MF∥BC,CF∥BM∴四边形BCFM为平行四边形∴BM=CF,BC=MF=AC,∵BC∥MF∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°在△MEF和△CDA中,∵∠EFM=∠2,MF=AC,∠EMF=∠ACD=60°∴△MEF≌△CDA(ASA)∴ME=CD∴ME=BM+BE=CF+BE=CD即CF+BE=CD(2)①BE=CD+CF,证明如下:如图,过F作FH∥BC,∵CF∥BH,FH∥BC,∴四边形BCFH为平行四边形∴HF=BC=AC,BH=CF∵△ABC为等边三角形∴∠ABC=∠ACB=60°∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°又∵∠AND=60°,即∠BDN+∠ADC=60°∴∠CAD=∠BDN∵BD∥HF∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°在△EFH和△DAC中,∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD∴△EFH≌△DAC(ASA)∴EH=CD∴BE=BH+EH=CF+CD即BE=CD+CF;②CF=CD+BE,证明如下:如图所示,过E作EG∥BC,∵EG∥BC,CG∥BE∴四边形BCGE为平行四边形,∴EG=BC=AC,BE=CG,∵∠AND=60°,∠ACD=60°∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°∴∠CDE=∠DAC又∵CD∥EG∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF∵AE∥CF∴∠DCF=∠ABC=60°∴∠EGF=∠ABC=60°在△EFG和△ADC中,∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°∴△EFG≌△ADC(ASA)∴FG=CD∴CF=CG+FG=BE+CD即CF=CD+BE【题目点拨】本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定与性质,解题的关键是根据“一线三等角”模型找到全等三角形,正确作出辅助线,利用等量代换找出线段关系.20、证明见解析【解题分析】
首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【题目详解】证明:∵BE∥DF,∴∠BEC=∠DFA∵在△ADF和△CBE中,,∴△ADF≌△CBE(AAS)∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形【题目点拨】本题考查平行四边形的判定.21、(1)见解析;(2)四边形ADCE是菱形,见解析.【解题分析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【题目详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形【题目点拨】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.22、DE=2.【解题分析】
根据勾股定理的逆定理求出,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【题目详解】,,为直角三角形,,在中,,,,,点为AC的中点,.【题目点拨】考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出是直角三角形是解此题的关键.23、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,-
)或P(0,)或P(0,6)或P(0,).【解题分析】
(1)利用待定系数法求得一次函数与反比例函数的解析式;
(2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
(1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
(3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.【题目详解】解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
∵B(n,-1)在y=的图象上,
∴n=-1.
∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
∴,
解得m=1,b=2.
∴两函数关系式分别是:y=和y=x+2.
(2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
(1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
∵A(1,1),B(-1,-1)
∴S△DBO=×1×2=1,S△DAO=×1×2=1
∴S△ABO=S△DBO+S△DAO=3.
(3)OA==,O是△AOP顶角的顶点时,OP=OA,则P(0,-
)或P(0,),A是△AOP顶角的顶点时,由图象得,
P(0,6),OA是底边,P是△AOP顶角的顶点时,设P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,则AP=OP=x,PM=1,AM=1-x,在Rt△APM中,即解得x=,∴P(0,).故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,-
)或P(0,)或P(0,6)或P(0,).【题目点拨】本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.24、(1)6-t;t+(2)①D(1,3)②3≤b≤【解题分析】
(1)根据OA的长以及点P运动的时间与速度可表示出OP的长,根据Q点的运动时间以及速度即可得OQ的长;(2)①根据翻折的性质结合勾股定理求得CD长即可得;②先求出直线AD的解析式,然后根据直线y=kx+b与直线AD平行,确定出k=,从而得表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋初中科学九年级下册同步课件(浙教版)1.3 地球的演化和生命的起源
- 北海市土地流转合同范本
- 《新媒体时代非遗类微纪录片的叙事研究》
- 种猪引种合同范本
- 《非严格反馈非线性系统自适应约束控制研究》
- 取消采购合同范本
- 郴州新商品房买卖合同范本
- 《复合酶-超声法提取菊苣多糖的工艺优化及其发酵乳品质特性研究》
- 《电针治疗糖尿病周围神经病的临床观察及其作用机制的实验研究》
- 船舶制造业全员安全生产责任制度研究
- 北师大版(2024新版)七年级上册数学期中学情评估检测试卷(含答案解析)
- 2024二十届三中全会知识竞赛题库及答案
- (高清版)JTG 5142-2019 公路沥青路面养护技术规范
- 正高级会计师答辩面试资料
- 步兵班战术教案(全)
- 推荐塞上风情笛子简谱
- 布鲁纳《教育过程》
- 样品承认书标准版
- 田间生产管理记录档案
- 智慧城市建设论文5篇
- 人教版八年级地理(上册)期中试卷及答案(完整)
评论
0/150
提交评论