2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题含解析_第1页
2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题含解析_第2页
2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题含解析_第3页
2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题含解析_第4页
2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南市数学八年级第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形2.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有A. B.C. D.3.下列图形中,既是轴对称又是中心对称图形的是()A.正方形 B.等边三角形 C.平行四边形 D.正五边形4.如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q5.对于函数y=-2x+5,下列说法正确的是()A.图象一定经过(2,-1) B.图象经过一、二、四象限C.图象与直线y=2x+3平行 D.y随x的增大而增大6.在同一直角坐标系中,函数y=-kx+k与y=(k≠0)的图象大致是()A. B. C. D.7.函数中,自变量的取值范围是()A. B. C. D.8.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>29.已知反比例函数y(k≠0),当x时y=﹣1.则k的值为()A.﹣1 B.﹣4 C. D.110.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3二、填空题(每小题3分,共24分)11.如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.12.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性_________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).13.体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.14.如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________15.如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.16.如图,两个大小完全相同的矩形ABCD和AEFG中AB=4cm,BC=3cm,则FC=_____.17.若分式的值为0,则的值为____.18.已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.三、解答题(共66分)19.(10分)(1)--;(2)20.(6分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.21.(6分)计算下列各题:(1)(2)22.(8分)如图,中,.(1)用尺规作图作边上的垂直平分线,交于点,交于点(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下,连接,若则的周长是.(直接写出答案)23.(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市某户6月份用水18吨,该户6月份水费是多少?(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.24.(8分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.25.(10分)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.26.(10分)计算:(1);(2)已知,求的值.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【题目详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.2、C【解题分析】

设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【题目详解】解:设该店春装原本打x折,依题意,得:500()2=1.故选:C.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、A【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】A、正方形既是轴对称图形,也是中心对称图形,故选A正确;B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;C、平行四边形不是轴对称图形,是中心对称图形,故C错误;D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.故选A.【题目点拨】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4、C【解题分析】

画出中心对称图形即可判断【题目详解】解:观察图象可知,点P.点N满足条件.故选:C.【题目点拨】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、B【解题分析】

利用一次函数的性质逐个分析判断即可得到结论.【题目详解】A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;C、∵y=-2x+5与y=2x+3的k的值不相等,∴图象与直线y=2x+3不平行,所以C不正确;D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;故选:B.【题目点拨】本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.6、C【解题分析】当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y=的图象位于第一、三象限。故本题正确答案为C.7、D【解题分析】试题分析:根据分式有意义的条件是分母不为1;分析原函数式可得关系式x+1≠1,解可得答案.解:根据题意可得x+1≠1;解得x≠﹣1;故选D.【点评】本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为1.8、C【解题分析】

由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.故答案为x<1.9、A【解题分析】

把、,代入解析式可得k.【题目详解】∵当x时y=﹣1,∴k=(﹣1)1,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10、A【解题分析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.故选A考点:一次函数的图像与性质二、填空题(每小题3分,共24分)11、(a+b,c)【解题分析】

平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.【题目详解】∵四边形ABCO是平行四边形,∴AO=BC,AO∥BC,∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,∵O,A,C的坐标分别是(0,0),(a,0),(b,c),∴B点的坐标为(a+b,c).故答案是:(a+b,c).【题目点拨】本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.12、小于【解题分析】

根据图形中的数据即可解答本题.【题目详解】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,

∴凸面向上”的可能性小于“凹面向上”的可能性.,

故答案为:小于.【题目点拨】本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.13、1【解题分析】

根据中位数的定义求解可得.【题目详解】解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,∴第10个、11个数据均为40,∵小于40的有6个,∴第7、8、9、10、11个数据一定为40,∴仰卧起坐次数为40次的女生人数至少有1人,故答案为:1.【题目点拨】本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.14、【解题分析】

由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.【题目详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=;故答案为:.【题目点拨】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.15、2或6或3.1或4.1.【解题分析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【题目详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.【题目点拨】掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.16、5cm【解题分析】

利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.【题目详解】∵矩形ABCD中,AB=4cm,BC=3cm,∴AC===5cm,∵矩形ABCD和AEFG是两个大小完全相同的矩形,∴AC=AF,∠BAC+∠GAF=90°,∴△ACF是等腰直角三角形,∴FC=AC=5cm.故答案为5cm.【题目点拨】本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.17、2【解题分析】

先进行因式分解和约分,然后求值确定a【题目详解】原式=∵值为0∴a-2=0,解得:a=2故答案为:2【题目点拨】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立18、﹣1【解题分析】

直接提取公因式ab,进而将已知代入求出即可.【题目详解】∵a+b=3,ab=-3,∴a2b+ab2=ab(a+b)=4×(-3)=-1.故答案为-1【题目点拨】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题(共66分)19、(1)-(2)【解题分析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【题目详解】(1)原式=-=-;(2)原式===.【题目点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.20、y=x﹣.【解题分析】

依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.【题目详解】解:把x=1代入y=﹣2x+1中,可得y=﹣1,故交点M的坐标是(1,﹣1);把y=2代入y=x﹣1中,得x=3,故交点N的坐标是(3,2),设这个一次函数的解析式是y=kx+b,把(1,﹣1),(3,2)代入,可得,解得,故所求函数的解析式是y=x﹣.【题目点拨】本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.21、(1)16−6;(2)4;.【解题分析】

(1)利用完全平方公式和平方差公式计算;(2)先分母有理化,再根据零指数幂的意义计算,然后合并即可;【题目详解】(1)原式=5−6+9+11−9=16−6;(2)原式=+1+3−1=4;【题目点拨】此题考查二次根式的混合运算,零指数幂,解题关键在于掌握运算法则.22、(1)见解析;(2)7.【解题分析】

(1)利用基本作图作的垂直平分线;(2)根据线段垂线平分线的性质得出,然后利用等线代换得到的周长.【题目详解】解:(1)如图,为所作:(2)就为边上的垂直平分线,的周长故答案为:.【题目点拨】本题考查了作图—基本作图:熟练掌握基本作图(做一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23、(1)该户6月份水费是45元;(2)y=3.3x-1.【解题分析】

(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.【题目详解】解:(1)根据题意:该户用水18吨,按每吨2.5元收费,2.5×18=45(元),答:该户6月份水费是45元;(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,应缴水费y=2.5×20+3.3×(x-20),整理后得:y=3.3x-1,答:y关于x的函数关系式为y=3.3x-1.【题目点拨】本题考查的是一次函数的应用,理清题意,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论