贵州省重点中学2023-2024学年数学九上期末检测试题含解析_第1页
贵州省重点中学2023-2024学年数学九上期末检测试题含解析_第2页
贵州省重点中学2023-2024学年数学九上期末检测试题含解析_第3页
贵州省重点中学2023-2024学年数学九上期末检测试题含解析_第4页
贵州省重点中学2023-2024学年数学九上期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省重点中学2023-2024学年数学九上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.2.﹣的绝对值为()A.﹣2 B.﹣ C. D.13.已知是方程的一个解,则的值是()A.±1 B.0 C.1 D.-14.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(

)A.2 B.1 C.32-5.下列反比例函数图象一定在第一、三象限的是()A. B. C. D.6.下列方程有实数根的是A. B. C.+2x−1=0 D.7.下列式子中表示是关于的反比例函数的是()A. B. C. D.8.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.09.如图,在⊙O中,AB为直径,CD为弦,∠CAB=50°,则∠ADC=()A.25° B.30° C.40° D.50°10.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A. B. C.2 D.二、填空题(每小题3分,共24分)11.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.12.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.13.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601共有白球___________只.14.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.15.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′的度数是______________.16.如图,是的直径,弦与弦长度相同,已知,则________.17.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为___.18.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.三、解答题(共66分)19.(10分)学生会要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度.20.(6分)计算:21.(6分)已知二次函数的图像经过点A(0,3),B(-1,0).(1)求该二次函数的解析式(2)在图中画出该函数的图象22.(8分)如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.(1)求证:为等腰直角三角形;(2)求证:;(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.23.(8分)如图,在直角坐标系中,以点为圆心,以3为半径的圆,分别交轴正半轴于点,交轴正半轴于点,过点的直线交轴负半轴于点.(1)求两点的坐标;(2)求证:直线是⊙的切线.24.(8分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.25.(10分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)26.(10分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?

参考答案一、选择题(每小题3分,共30分)1、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用2、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解:﹣的绝对值为|-|=-(﹣)=.点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.3、A【分析】利用一元二次方程解得定义,将代入得到,然后解关于的方程.【详解】解:将代入得到,解得故选A【点睛】本题考查了一元二次方程的解.4、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.5、A【分析】根据反比例函数的性质,函数若位于一、三象限,则反比例函数系数k>0,对各选项逐一判断即可.【详解】解:A、∵m2+1>0,∴反比例函数图象一定在一、三象限;B、不确定;

C、不确定;

D、不确定.

故选:A.【点睛】本题考查了反比例函数的性质,理解反比例函数的性质是解题的关键.6、C【解析】A.∵x4>0,∴x4+2=0无解,故本选项不符合题意;B.∵≥0,∴=−1无解,故本选项不符合题意;C.∵x2+2x−1=0,=8>0,方程有实数根,故本选项符合题意;D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C.7、C【解析】根据反比例函数的定义进行判断.【详解】解:A.是正比例函数,此选项错误;B.是正比例函数,此选项错误;C.是反比例函数,此选项正确;D.是一次函数,此选项错误.故选:C.【点睛】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为(k≠0)的形式.8、B【解析】试题解析:是关于的二次函数,解得:故选B.9、C【分析】先推出∠ABC=40°,根据同弧所对的圆周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【详解】解:∵AB为直径,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故选:C.【点睛】本题考查了直径所对的圆周角是90°,同弧所对的圆周角相等,推出∠ABC=90°是解题关键.10、B【分析】取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标,可得⊙C半径为4,由三角形中位线的定理可求OD=PH,当点C在PH上时,PH有最大值,即可求解.【详解】如图,取点H(6,0),连接PH,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴,解得:,∴抛物线解析式为:y=﹣,∴顶点C(﹣3,4),∴⊙C半径为4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选B.【点睛】本题主要考查了切线的性质,二次函数的性质,三角形中位线定理等知识,解决本题的关键是要熟练掌握二次函数性质和三角形中位线的性质.二、填空题(每小题3分,共24分)11、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.12、2-2【解析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.13、30【分析】根据利用频率估计概率得到摸到白球的概率为60%,然后根据概率公式计算n的值.【详解】白球的个数=只故答案为:30【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率14、1【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=×4×4=1,故答案为1.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.15、105°【分析】根据旋转的性质得AB′=AB,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠C′AB′=75°,于是得到结论.【详解】解:∵△ABC绕点A逆时针旋转到△AB′C′,

∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,

∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′

∵BB'∥AC,

∴∠AB′B=∠C′AB′=75°,

∴∠C′AC=∠B′AB=180°-2×75°=30°,

∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案为:105°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.16、【分析】连接BD交OC与E,得出,从而得出;再根据弦与弦长度相同得出,即可得出的度数.【详解】连接BD交OC与E是的直径弦与弦长度相同故答案为.【点睛】本题考查了圆周角定理,辅助线得出是解题的关键.17、【详解】解:连接BE∵⊙的半径,AB=2∴且,若设⊙的半径为,则.在△ACO中,根据勾股定理有,即,解得:.∴.∵是⊙的直径,∴.故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.18、1【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:,解得:x=1.故答案为:1.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.三、解答题(共66分)19、上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【分析】由内外两个矩形相似可得,设A′B′=13x,根据矩形作品面积是总面积的列方程可求出x的值,进而可得答案.【详解】∵AB=130,AD=10,∴,∵内外两个矩形相似,∴,∴设A′B′=13x,则A′D′=1x,∵矩形作品面积是总面积的,∴,解得:x=±12,∵x=﹣12<0不合题意,舍去,∴x=12,∴上下彩色纸边宽为(13x﹣130)÷2=13,左右彩色纸边宽为(1x﹣10)÷2=1.答:上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【点睛】本题考查相似多边形的性质,相似多边形的对应角相等,对应边成比例;根据相似多边形的性质得出A′B′与A′D′的比是解题关键.20、【分析】分别按照二次根式化简,绝对值的化简,求一个数的立方根,负整数指数幂的计算法则进行计算,最后做加减.【详解】解:===【点睛】本题考查二次根式化简,绝对值的化简,求一个数的立方根,负整数指数幂的计算,熟练掌握相应的计算法则是本题的解题关键.21、(1);(2)详见解析.【分析】(1)根据二次函数的图象经过点A(0,3),B(-1,0)可以求得该函数的解析式;(2)根据(1)中求得的函数解析式可以得到该函数经过的几个点,从而可以画出该函数的图象;【详解】解:(1)把A(0,3),B(-1,0)分别代入,得解得所以二次函数的解析式为:(2)由(1)得列表得:如图即为该函数图像:【点睛】本题考查求抛物线的解析式、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想.22、(1)见解析;(2)见解析;(3)存在,【分析】(1)根据圆周角定理由AB是⊙O的直径得∠AMB=90°,由M是弧AB的中点得,于是可判断△AMB为等腰直角三角形;(2)连接OM,根据等腰直角三角形的性质得∠ABM=∠BAM=∠OMA=45°,OM⊥AB,MB=AB=6,再利用等角的余角相等得∠BOE=∠MOF,则可根据“SAS”判断△OBE≌△OMF,所以OE=OF;(3)易得△OEF为等腰直角三角形,则EF=OE,再由△OBE≌△OMF得BE=MF,所以△EFM的周长=EF+MF+ME=EF+MB=OE+4,根据垂线段最短得当OE⊥BM时,OE最小,此时OE=BM=2,进而求得△EFM的周长的最小值.【详解】(1)证明:是的直径,.是弧的中点,.,为等腰直角三角形.(2)证明:连接,由(1)得:.,.,,.在和中,,..(3)解:的周长有最小值.,为等腰直角三角形,,,.的周长.当时,最小,此时,的周长的最小值为.【点睛】本题考查了圆的综合题:熟练运用圆周角定理和等腰直角三角形的判定与性质,全等三角形的判定与性质是解题关键.23、(1),;(2)详见解析.【分析】(1)先根据圆的半径可求出CA的长,再结合点C坐标即可得出点A坐标;根据点C坐标可知OC的长,又根据圆的半径可求出CB的长,然后利用勾股定理可求出OB的长,即可得出点B坐标;(2)先根据点坐标分别求出,再根据勾股定理的逆定理可得是直角三角形,然后根据圆的切线的判定定理即可得证.【详解】(1)∵,圆的半径为3∴,∴点A是x轴正半轴与圆的交点∴如图,连接CB,则在中,点B是y轴正半轴与圆的交点∴;(2)∵∴在中,则在中,是直角三角形,即又∵BC是⊙C半径∴直线BD是⊙C的切线.【点睛】本题是一道较简单的综合题,考查了圆的基本性质、勾股定理、圆的切线的判定定理等知识点,熟记各定理与性质是解题关键.24、(1)y=(x>0);(2)△OAB的面积为2.【分析】(1)将A点的横坐标代入正比例函数,可求出A点坐标,再将A点坐标代入反比例函数求出k,即可得解析式;(2)过A点作AN⊥OM,垂足为点N,则AN∥PM,根据平行线分线段成比例得,进而求出M点坐标,将M点的横坐标分别代入反比例函数和正比例函数,求出B、P的坐标,再利用三角形面积公式求出△POM、△BOM的面积,作差得到△BOP的面积,最后根据S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【详解】解:(1)A点在正比例函数y=x的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=(x>0),得,解得k=1.∴反比例函数的表达式为y=(x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M点的坐标为(1,0)将x=1代入y=,得y==1,∴点B的坐标为(1,1)将x=1代入y=x,得y==9,∴点P的坐标为(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面积为2.【点睛】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.25、此时快艇与岛屿C的距离是20nmile.【分析】过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,由DE∥CF,DC∥EF,∠CF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论