广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题含解析_第1页
广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题含解析_第2页
广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题含解析_第3页
广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题含解析_第4页
广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中学山市四中学2023-2024学年九年级数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A. B. C. D.2.在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A点的对应点A′坐标为()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B.C. D.4.一元二次方程配方为()A. B. C. D.5.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交6.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm7.下列各点在反比例函数y=-图象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)8.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²9.如图,在第一象限内,,是双曲线()上的两点,过点作轴于点,连接交于点,则点的坐标为()A. B. C. D.10.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A. B. C. D.11.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()A.56° B.55°C.35° D.34°12.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°二、填空题(每题4分,共24分)13.已知一组数据:12,10,1,15,6,1.则这组数据的中位数是__.14.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.15.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90和0.3,则动力(单位:)与动力臂(单位:)之间的函数解析式是__________.16.方程(x﹣1)(x﹣3)=0的解为_____.17.若关于x的方程有两个不相等的实数根,则a的取值范围是________.18.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.三、解答题(共78分)19.(8分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?20.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.21.(8分)某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏.主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)22.(10分)(x2+y23.(10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是__________阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.(2)操作、探究与计算:①已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;②已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.24.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.25.(12分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.26.如图,四边形内接于,对角线为的直径,过点作的垂线交的延长线于点,过点作的切线,交于点.(1)求证:;(2)填空:①当的度数为时,四边形为正方形;②若,,则四边形的最大面积是.

参考答案一、选择题(每题4分,共48分)1、D【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.2、A【分析】根据相似比为2,B′的坐标为(﹣6,0),判断A′在第三象限即可解题.【详解】解:由题可知OA′:OA=2:1,∵B′的坐标为(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A′的象限是解题关键.3、B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选B.【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4、A【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】解:x2-6x-4=0,

x2-6x=4,

x2-6x+32=4+32,

(x-3)2=13,

故选:A.【点睛】此题考查了解一元二次方程-配方法.配方法的一般步骤:(1)把常数项移到等号的右边;

(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.6、A【解析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R,根据题意得2π•5,解得R=1.即圆锥的母线长为1cm,∴圆锥的高为:5cm.故选:A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、D【分析】将各选项点的横坐标代入,求出函数值,判断是否等于纵坐标即可.【详解】解:A.将x=3代入y=-中,解得y=-2,故(3,2)不在反比例函数y=-图象上,故A不符合题意;B.将x=2代入y=-中,解得y=-3,故(2,3)不在反比例函数y=-图象上,故B不符合题意;C.将x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函数y=-图象上,故C不符合题意;D.将x=-代入y=-中,解得y=2,故(-,2)在反比例函数y=-图象上,故D符合题意;故选:D.【点睛】此题考查的是判断一个点是否在反比例函数图象上,解决此题的关键是将点的横坐标代入,求出函数值,判断是否等于纵坐标即可.8、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.9、D【分析】先根据P点坐标计算出反比例函数的解析式,进而求出M点的坐标,再根据M点的坐标求出OM的解析式,进而将代入求解即得.【详解】解:将代入得:∴∴反比例函数解析式为将代入得:∴∴设OM的解析式为:∴将代入得∴∴OM的解析式为:当时∴点的坐标为.故选:D.【点睛】本题考查待定系数法求解反比例函数和正比例函数解析式,解题关键是熟知求反比例函数和正比例函数解析式只需要一个点的坐标.10、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可.【详解】解:若用表示直行、表示右转,则画树状图如下:∵共有种等可能的结果,其中恰好有辆车直行占种∴(恰好辆车直行).故选:B【点睛】此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比.11、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得∠C的度数.【详解】解:AB为⊙O的直径,点D为⊙O上的一个点故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.12、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.二、填空题(每题4分,共24分)13、2【解析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可【详解】解:将数据从小到大重新排列为:6、1、1、10、12、15,所以这组数据的中位数为,故答案为:2.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可14、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15、【分析】直接利用阻力×阻力臂=动力×动力臂,进而代入已知数据即可得解.【详解】解:∵阻力×阻力臂=动力×动力臂,∴∴故答案为:.【点睛】本题考查的知识点是用待定系数法求反比例函数解析式,解此题的关键是要知道阻力×阻力臂=动力×动力臂.16、x1=3,x2=1【分析】利用因式分解法求解可得.【详解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案为:x1=3,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.18、1【分析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.【详解】解:设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故该圆的半径为1cm.故答案为1.【点睛】本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力.试题通过将快门的光圈变化这个动态的实际问题化为静态的数学问题,让每个学生都能参与到实际问题数学化的过程中,鼓励学生用数学的眼光观察世界;在运用数学知识解决问题的过程中,关注思想方法,侧重对问题的分析,将复杂的图形转化为三角形或四边形解决,引导学生用数学的语言表达世界,用数学的思维解决问题.三、解答题(共78分)19、(1);(2);(3)步数之差最多是厘米,【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当时的函数值;(3)先求得当时的函数值,再判断当时的函数值的范围.【详解】(1)设反比例函数解析式为,将,代入解析式得:,解得:,反比例函数解析式为;(2)将代入得;(3)反比例函数,在每一象限随增大而减小,当时,,解得:,当时,,步数之差最多是厘米.【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确解答本题的关键.20、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【点睛】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.21、;【分析】根据概率的计算法则得出概率,首先根据题意列出表格,然后求出概率.【详解】(1)P(恰好是A,a)的概率是=(2)依题意列表如下:共有9种情形,每种发生可能性相等,其中恰好是两对家庭成员有(AB,ab),(AC,ac),(BC,bc)3种,故恰好是两对家庭成员的概率是P=考点:概率的计算.22、4【解析】先设t=x2+y2,则方程即可变形为t(t-1)-12=0,解方程即可求得t即x2+y2的值.【详解】设t=x2+y2,所以原式可变形为为t(t-1)-12=0,t2-t-12=0,(t-4)(t+3)=0,所以t=-3或t=4;因为x2+y2≥0,所以x2+y2=4.【点睛】此题考查换元法解一元二次方程,解题关键在于设t=x2+y2.23、(1)①2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.【解析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;

②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;

(2)①利用3阶准菱形的定义,即可得出答案;

②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,

故邻边长分别为2和3的平行四边形是2阶准菱形;

故答案为:2;

②由折叠知:∠ABE=∠FBE,AB=BF,

∵四边形ABCD是平行四边形,

∴AE∥BF,

∴∠AEB=∠FBE,

∴∠AEB=∠ABE,

∴AE=AB,

∴AE=BF,

∴四边形ABFE是平行四边形,

∴四边形ABFE是菱形;

(2)①如图所示:

②答:10阶菱形,

∵a=6b+r,b=5r,

∴a=6×5r+r=31r;

如图所示:

故▱ABCD是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.24、(1)k=32;(2)菱形ABCD平移的距离为.【分析】(1)由题意可得OD=5,从而可得点A的坐标,从而可得k的值;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,由题意可知D’的纵坐标为3,从而可得横坐标,从而可知平移的距离.【详解】(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,过点D’做x轴的垂线,垂足为F’.∵DF=3,∴D’F’=3,∴点D’的纵坐标为3,∵点D’在的图象上,∴3=,解得=,即∴菱形ABCD平移的距离为.考点:1.勾股定理;2.反比例函数;3.菱形的性质;4.平移.25、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根据正方形的性质得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根据弧长的计算公式和扇形的面积公式即可得到结论;(Ⅱ)连接BC′,根据题意得到B在对角线AC′上,根据勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到结论;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FO=AB′=1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论.【详解】解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论