福建省福州市格致中学2023-2024学年高考适应性考试数学试卷含解析_第1页
福建省福州市格致中学2023-2024学年高考适应性考试数学试卷含解析_第2页
福建省福州市格致中学2023-2024学年高考适应性考试数学试卷含解析_第3页
福建省福州市格致中学2023-2024学年高考适应性考试数学试卷含解析_第4页
福建省福州市格致中学2023-2024学年高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市格致中学2023-2024学年高考适应性考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则a的取值范围为()A. B. C. D.2.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.3.在原点附近的部分图象大概是()A. B.C. D.4.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.5.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.56.抛物线的焦点为,点是上一点,,则()A. B. C. D.7.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.8.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()10.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.11.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A. B. C. D.12.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.25二、填空题:本题共4小题,每小题5分,共20分。13.设定义域为的函数满足,则不等式的解集为__________.14.已知在等差数列中,,,前n项和为,则________.15.设是等比数列的前项的和,成等差数列,则的值为_____.16.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.(1)若,求直线与轴的交点坐标;(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.18.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,,)19.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.20.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.22.(10分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.2、C【解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.3、A【解析】

分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.4、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.5、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.6、B【解析】

根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.7、C【解析】

根据程序框图写出几次循环的结果,直到输出结果是8时.【详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.8、C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.9、B【解析】

根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.10、A【解析】

由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.11、D【解析】

易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【详解】易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.故选D.【点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.12、D【解析】

由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.14、39【解析】

设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15、2【解析】

设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.16、【解析】

由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.【详解】设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图则,所以,,解得,所以,,,由,得,解得.故答案为:【点睛】本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分和说明.【详解】解:本题考查直线与椭圆的位置关系的综合,(1)由题知,,则.因为,所以,则直线的方程为,联立,可得故.则,直线的方程为.令,得,故直线与轴的交点坐标为.(2)证明:因为,,所以.设点,则.设当时,设,则,此时直线与轴垂直,其直线方程为,直线的方程为,即.在方程中,令,得,得交点为,显然在椭圆上.同理当时,交点也在椭圆上.当时,可设直线的方程为,即.直线的方程为,联立方程,消去得,化简并解得.将代入中,化简得.所以两直线的交点为.因为,又因为,所以,则,所以点在椭圆上.综上所述,直线与直线的交点在椭圆上.【点睛】本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,代入曲线方程验证点在曲线.本题考查了学生的运算求解能力.18、(Ⅰ)1636人;(Ⅱ)见解析.【解析】

(Ⅰ)根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;(Ⅱ)由题意得成绩在区间[61,80]的概率为,且,由此可得的分布列和数学期望.【详解】(Ⅰ)因为物理原始成绩,所以.所以物理原始成绩在(47,86)的人数为(人).(Ⅱ)由题意得,随机抽取1人,其成绩在区间[61,80]内的概率为.所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以,,,.所以的分布列为0123所以数学期望.【点睛】(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性.(2)解答第二问的关键是判断出随机变量服从二项分布,然后可得分布列及其数学期望.当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布.19、(1)证明见解析(2)证明见解析【解析】

(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知;,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.【详解】(1)依题意,,因为,且,故,故函数在上单调递减,故.(2)依题意,,令,则;而,可知当时,,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.20、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函数值域的方法即可得到答案.【详解】(1)因为,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因为,所以.(2)由(1)得,在中,,所以.因为,所以,所以当,即时,有最大值1,所以的最大值为.【点睛】本题考查正余弦定理解三角形,涉及到两角差的正弦公式、辅助角公式、向量数量积的坐标运算,是一道容易题.21、(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】

(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论