北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题含解析_第1页
北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题含解析_第2页
北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题含解析_第3页
北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题含解析_第4页
北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市顺义区第九中学2023-2024学年高考冲刺模拟数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}2.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.4.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.5.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.636.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.7.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.8.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.9.下列图形中,不是三棱柱展开图的是()A. B. C. D.10.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④11.若各项均为正数的等比数列满足,则公比()A.1 B.2 C.3 D.412.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.14.函数在区间上的值域为______.15.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)16.已知,,分别为内角,,的对边,,,,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.18.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.19.(12分)如图,四棱锥中,底面为直角梯形,,,,,在锐角中,E是边PD上一点,且.(1)求证:平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为?20.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.21.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.22.(10分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.2、B【解析】

先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.3、B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.4、A【解析】

利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.5、D【解析】

根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.6、D【解析】

由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.7、A【解析】双曲线﹣=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.8、D【解析】

先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.9、C【解析】

根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.10、D【解析】

根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.11、C【解析】

由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.12、A【解析】

先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。【详解】由题意可得,直线的方程为,联立方程组,可得,设,则,,设,则,,又,所以圆是以为圆心,4为半径的圆,所以点恒在圆外.圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,要满足题意,则,所以,整理得,解得,故实数的取值范围为【点睛】本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。14、【解析】

由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.15、y=2x【解析】试题分析:当x>0时,-x<0,则f(-x)=ex-1+x.又因为f(x)为偶函数,所以f(x)=f(-x)=ex-1+x,所以f'【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当x>0时,函数y=f(x),则当x<0时,求函数的解析式”.有如下结论:若函数f(x)为偶函数,则当x<0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x).16、【解析】

根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.【详解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周长a+b+c=3+3.【点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.18、(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大.【解析】

(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画出频率分布直方图;(2)首先确定的所有可能取值,由超几何分布概率公式可计算求得每个取值对应的概率,由此得到分布列;根据数学期望的计算公式可求得期望;(3)根据中不赞成比例最大可知来自的可能性最大.【详解】(1)由频率分布表得:,即.收入在的有名,,,,则频率分布直方图如下:(2)收入在中赞成人数为,不赞成人数为,可能取值为,则;;,的分布列为:.(3)来自的可能性更大.【点睛】本题考查概率与统计部分知识的综合应用,涉及到频数、频率的计算、频率分布直方图的绘制、服从于超几何分布的随机变量的分布列与数学期望的求解、统计估计等知识;考查学生的运算和求解能力.19、(1)证明见解析;(2)当时,AC与平面PCD所成的角为.【解析】

(1)连接交于,由相似三角形可得,结合得出,故而平面;(2)过作,可证平面,根据计算,得出的大小,再计算的长.【详解】(1)证明:连接BD交AC于点O,连接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F为垂足,连接CF平面PAD,平面PAD.,有,,平面就是AC与平面PCD所成的角,,,,,,时,AC与平面PCD所成的角为.【点睛】本题考查了线面平行的判定,线面垂直的判定与线面角的计算,属于中档题.20、(1)见解析;(2)【解析】

(1)取的中点,连接,,由,进而,由,得.进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,,得二面角的平面角为,再求解即可【详解】(1)证明:取的中点,连接,,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,,,,所以,,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论