安徽省铜陵市浮山中学2024届高考数学四模试卷含解析_第1页
安徽省铜陵市浮山中学2024届高考数学四模试卷含解析_第2页
安徽省铜陵市浮山中学2024届高考数学四模试卷含解析_第3页
安徽省铜陵市浮山中学2024届高考数学四模试卷含解析_第4页
安徽省铜陵市浮山中学2024届高考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省铜陵市浮山中学2024届高考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β2.命题“”的否定为()A. B.C. D.3.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题4.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、6.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.7.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.8.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.9.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或 B.C.或 D.10.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间11.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=012.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.14.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.15.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.16.某大学、、、四个不同的专业人数占本校总人数的比例依次为、、、,现欲采用分层抽样的方法从这四个专业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_________人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.18.(12分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.19.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.20.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.21.(12分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.22.(10分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.2、C【解析】

套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.3、D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.4、C【解析】

根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.5、A【解析】

设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.6、B【解析】

根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.7、D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.8、B【解析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.9、C【解析】

根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,则,令,解得,所以当时,,则在内单调递增;当时,,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.10、D【解析】

可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题11、A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.12、B【解析】

建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.【详解】∵向量与的夹角为,||=||=1,且;∴;∴λ=1.故答案为:1.【点睛】考查向量数量积的运算及计算公式,以及向量垂直的充要条件.14、【解析】

如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,,,,,,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.15、【解析】

先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.16、【解析】

求出专业人数在、、、四个专业总人数的比例后可得.【详解】由题意、、、四个不同的专业人数的比例为,故专业应抽取的人数为.故答案为:1.【点睛】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(Ⅰ)因为,所以,,切点为.由,所以,所以曲线在处的切线方程为,即(Ⅱ)由,令,则(当且仅当取等号).故在上为增函数.①当时,,故在上为增函数,所以恒成立,故符合题意;②当时,由于,,根据零点存在定理,必存在,使得,由于在上为增函数,故当时,,故在上为减函数,所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由(Ⅱ)知当时,,故当时,,故,故.下面证明:因为而,所以,,即:点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题.18、(Ⅰ),.(Ⅱ)见解析【解析】

(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【详解】(Ⅰ)解:由题,得当时,,得;当时,,整理,得.数列是以1为首项,2为公比的等比数列,,;(Ⅱ)证明:由(Ⅰ)知,,故.故得证.【点睛】本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.19、;.【解析】

连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.20、;证明见解析.【解析】

当时,集合共有个子集,即可求出结果;分类讨论,利用数学归纳法证明.【详解】当时,集合共有个子集,所以;①当时,,由可知,,此时令,,,,满足对任意,都有,且;②假设当时,存在有序集合组满足题意,且,则当时,集合的子集个数为个,因为是4的整数倍,所以令,,,,且恒成立,即满足对任意,都有,且,综上,原命题得证.【点睛】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.21、(1)答案见解析(2)【解析】

(1)先对函数进行求导得,对分成和两种情况讨论,从而得到相应的单调区间;(2)对函数求导得,从而有,,,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.【详解】解:(1)由,,则,当时,则,故在上单调递减;当时,令,所以在上单调递减,在上单调递增.综上所述:当时,在上单调递减;当时,在上单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论