百色市重点中学2024届数学七年级第二学期期末联考试题含解析_第1页
百色市重点中学2024届数学七年级第二学期期末联考试题含解析_第2页
百色市重点中学2024届数学七年级第二学期期末联考试题含解析_第3页
百色市重点中学2024届数学七年级第二学期期末联考试题含解析_第4页
百色市重点中学2024届数学七年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百色市重点中学2024届数学七年级第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图有2个方格块(图中黑色部分),现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向下平移3格,向左2格 B.向下平移3格,向左2格C.向下平移4格,向左1格 D.向下平移4格,向右2格2.为应对越来越复杂的交通状况,某城市对其道路进行拓宽改造,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是()A. B. C. D.3.下列四个图形中,即是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,已知AB=AC=BD,则∠1与∠2的关系是()A.3∠1﹣∠2=180° B.2∠1+∠2=180°C.∠1+3∠2=180° D.∠1=2∠25.如图所示,∠1和∠2是对顶角的是()A. B. C. D.6.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100° B.110° C.120° D.130°7.用加减消元法解方程组2x-3y=6                   ①3x-2y=7A.①×3-②×2,消去x B.①×2-②×3,消去yC.①×-3+②×2,消去x D.①×2-②×8.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或89.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个 B.5个 C.6个 D.7个10.无论x为任何实数,下列分式都有意义的是()A.1x2 B.13x C.二、填空题(本大题共有6小题,每小题3分,共18分)11.若关于的不等式的负整数解是,则实数满足的条件是________.12.把无理数,,,-表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.13.在△ABC中,∠CAB=2∠B,AE平分∠CAB,CD⊥AB于D,AC=3,AD=1.下列结论:①∠AEC=∠CAB;②EF=CE;③AC=AE;④BD=4;正确的是___________(填序号)14.一个多边形每一个外角都等于30°,则这个多边形的边数是_____.15.如图:请你添加一个条件_____可以得到DE//AB16.如图,已知△ABC中,AB=AC=16cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动,当以B、P、D为顶点的三角形与以C、Q、P为顶点的三角形全等时,点Q的速度可能为_____.三、解下列各题(本大题共8小题,共72分)17.(8分)将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,友情提示:,,.(1)①若,则的度数为__________;②若,则的度数为__________.(2)由(1)猜想与的数量关系,并说明理由;(3)当且点在直线的上方时,当这两块角尺有一组边互相平行时,请直接写出角度所有可能的值.18.(8分)已知下列单项式:①4m2,②9b2a,③6a2b,④4n2,⑤-4n2,⑥-12ab,⑦-8mn,⑧a1.请在以上单项式中选取三个组成一个能够先用提公因式法,再用公式法因式分解的多项式并将这个多项式分解因式.19.(8分)先化简代数式,然后在2,,0中取一个合适的值,代入求值.20.(8分)对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,-5,0,-2,+4,-1,-1,+1.(1)这8名男生有百分之几达到标准?(2)这8名男生共做了多少个引体向上?21.(8分)(1)计算:(-3a3)2·2a3-1a12÷a3;(2)先化简,再求值:(a+b)2-2a(a-b)+(a+2b)(a-2b),其中a=-1,b=1.22.(10分)某民营企业准备用14000元从外地购进、两种商品共600件,其中种商品的成本价为20元,种商品的成本价为30元.(1)该民营企业从外地购得、两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将、两种商品运往某城市,已知每辆甲种货车最多可装种商品110件和种商品20件;每辆乙种货车最多可装种商品30件和种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.23.(10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批两种不同型号口罩进行销售.下表是甲、乙两人购买两种型号口罩的情况:A型号数量(单位:个)B型号数量(单位:个)总售价(单位:元)甲1326乙3229(1)求一个型口罩和一个型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中型口罩数量不少于35个,且不多于型口罩的3倍,有几种购买方案?请写出购买方案.(3)在(2)的条件下,药店在销售完这批口罩后,总售价能否达到282元?24.(12分)如图,已知∠A=∠F,∠C=∠D,请问BD与CE平行吗?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据图形判断平移的方向和距离即可.【题目详解】解:根据图形可知,上面的方格块向下平移4格,向右2格后,上面的方格块与下面的两个方格块合成一个长方形的整体,故选D.【题目点拨】本题考查了生活中的平移现象,解决本题的关键是得到移动的左右距离和上下距离.2、D【解题分析】

根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.【题目详解】解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【题目点拨】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.3、C【解题分析】

根据中心对称图形和轴对称图形的概念逐一进行分析判断即可.【题目详解】A,是轴对称图形,不是中心对称图形,故不符合题意;B、是中心对称图形,不是轴对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、不是轴对称图形,也不是中心对称图形,故不符合题意,故选C.【题目点拨】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.4、A【解题分析】

根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【题目详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【题目点拨】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.5、C【解题分析】试题分析:根据对顶角的定义可知,图C中的∠1和∠2是对顶角.故选C.考点:对顶角的定义.6、B【解题分析】

折叠后,四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=∠D′MN,同时∠AMD′=90°-∠AD'M=40°,所以∠DMN=∠D′MN=(180°-40°)÷2=70°,根据四边形内角和360°即可求得∠MNC'的度数.【题目详解】解:四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=∠D′MN,且∠AMD′=90°-∠AD'M=40°,∴∠DMN=∠D′MN=(180°-40°)÷2=70°由于∠MD′C′=∠NC′D′=90°,∴∠MNC'=360°-90°-90°-70°=110°故选B.【题目点拨】本题主要考查四边形内角和以及折叠问题.熟悉四边形内角和是解答本题的关键.其次我们还需知道折叠前后对应线段相等,对应角相等.7、D【解题分析】

应用加减消元法,判断出解法不正确的是哪个即可.【题目详解】解:2x-3y=6①①×3-②×2,消去x,A不符合题意;①×2-②×3,消去y,B不符合题意;①×(-3)+②×2,消去x,C不符合题意;应该是:①×2+②×(-3),消去y,不是:①×2-②×(-3),消去y,D符合题意.故选:D.【题目点拨】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.8、D【解题分析】试题分析:当底为2时,腰为3,周长=2+3+3=8;当底为3时,腰为2,周长=3+2+2=7.考点:等腰三角形的性质.9、A【解题分析】

根据无理数的定义进行解答即可.【题目详解】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【题目点拨】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.10、D【解题分析】

根据分式有意义的条件对各选项进行逐一分析即可.【题目详解】A、当x=0时,此分式无意义,故本选项错误;B、当x=0时,此分式无意义,故本选项错误;C、当x=−3时,x+3=0,此分式无意义,故本选项错误;D、无论x为何实数,x2+1>0,故本选项正确.故选:D.【题目点拨】本题考查的是分式有意义的条件,即分式分母不等于零.二、填空题(本大题共有6小题,每小题3分,共18分)11、【解题分析】

首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a的不等式组,从而求得a的范围.【题目详解】根据题意得:,故答案为:.【题目点拨】本题考查了不等式的整数解.在解不等式时要根据不等式的基本性质.12、【解题分析】∵,,,且被墨迹覆盖的数在3至4之间,∴上述四个数中被墨迹覆盖的数是.故答案为:.13、①②.【解题分析】

根据角平分线,三角形的外角性质以及等角对等边的性质可得出结论①②正确.【题目详解】解:∵AE平分∠CAB,∴∠CAB=2∠EAB,∵∠CAB=2∠B,∴∠EAB=∠B,∵∠AEC=∠B+∠EAB,∴∠AEC=2∠B=∠CAB,①正确;∵CD⊥AB于D,∴∠B+∠DCB=90°,∠EAB+∠AFD=90°,∵∠EAB=∠B,∴∠DCB=∠AFD,∵∠CFE=∠AFD,∴∠CFE=∠DCB,∴EF=CE,②正确;无法证明AC=AE,故③不正确;∵AC=3,AD=1,CD⊥AB于D,∴CD=,不能得出BD=4,故④不正确.故答案为①②.【题目点拨】本题考查角平分线,三角形的外角性质以及等角对等边的性质,正确的识别图形是解题的关键.14、1【解题分析】

多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【题目详解】∵360°÷30°=1,∴这个多边形为十二边形,故答案为:1.【题目点拨】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.15、答案不唯一,当添加条件∠EDC=∠C或∠E=∠EBC或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE∥AB.【解题分析】

根据平行线的判定方法结合图形进行分析解答即可.【题目详解】由图可知,要使DE∥AB,可以添加以下条件:(1)当∠EDC=∠C时,由“内错角相等,两直线平行”可得DE∥AB;(2)当∠E=∠EBC时,由“内错角相等,两直线平行”可得DE∥AB;(3)当∠E+∠EBA=180°时,由“同旁内角互补,两直线平行”可得DE∥AB;(4)当∠A+∠ADE=180°时,由“同旁内角互补,两直线平行”可得DE∥AB.故本题答案不唯一,当添加条件∠EDC=∠C或∠E=∠EBC或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE∥AB.【题目点拨】熟悉“平行线的判定方法”是解答本题的关键.16、2或3.2厘米/秒.【解题分析】

因为AB=AC,所以有∠B=∠C,故三角形BDP与三角形CQP中,B点和C点为对应点,DP与PQ对应,所以分成两种情况进行讨论:①BP=CQ,BD=CQ;②BP=CP,BD=CQ,设运动时间为t,然后建立方程解出即可【题目详解】因为AB=AC,所以有∠B=∠C,故三角形BDP与三角形CQP中,B点和C点为对应点,DP与PQ对应,所以以B、P、D为顶点的三角形与以C、Q、P为顶点的三角形全等有两种情况BP=CQ,BD=CQ时,则Q的运动速度与P的运动速度相等,为2cm/s②BP=CP,BD=CQ时,设运动时间为t,∵BC=10,∴2t=10-2t,解出t=∵AB=16,D为AB中点∴BD=8∴CQ=88÷=所以Q的运动速度可能是2cm/s或者cm/s【题目点拨】本题考查动点问题中全等三角形存在性问题,本题的关键在于能够对三角形全等进行分情况讨论三、解下列各题(本大题共8小题,共72分)17、(1)①答案为:;②答案为:;(2);(3)、.【解题分析】

(1)①根据∠DCE和∠ACD的度数,求得∠ACE的度数,再根据∠BCE求得∠ACB的度数;②根据∠BCE和∠ACB的度数,求得∠ACE的度数,再根据∠ACD求得∠DCE的度数;

(2)根据∠ACE=90°-∠DCE以及∠ACB=∠ACE+90°,进行计算即可得出结论;

(3)分2种情况进行讨论:当CB∥AD时,当EB∥AC时,分别求得∠ACE角度即可.【题目详解】解:(1)①∵∠DCE=50°,∠ACD=90°∴∠ACE=40°∵∠BCE=90°∴∠ACB=90°+40°=130°故答案为130;②∵∠ACB=120°,∠ECB=90°

∴∠ACE=120°-90°=30°

∴∠DCE=90°-∠ACE=90°-30°=60°

故答案为60°;(2)猜想:理由如下:又即;(3)、,理由:当CB∥AD时,∠ACE=30°;

当EB∥AC时,∠ACE=45°.【题目点拨】本题考查了平行线的性质,以及直角三角形的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.18、见解析【解题分析】

直接将其中三个组合进而利用提取公因式法以及公式法分解因式得出答案.【题目详解】4m2+4n2-8mn=4(m2+n2-2mn)=4(m-n)2【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19、;1.【解题分析】

根据分式的减法和除法可以化简题目中的式子,然后在-2,2,0中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【题目详解】原式=[]÷

==a2+1;当a=0时,原式=0²+1=1(-2,2均使分母为零,均不能取)【题目点拨】本题考查了分式的化简求值,熟悉因式分解是解题的关键.20、(1)50%;(2)80个;【解题分析】

负数的没有达标.【题目详解】(1)负数的没有达标,故=50%;(2)∵2-5+0-2+4-1-1+1=0∴810=80个.【题目点拨】正确理解题意是解题的关键.21、(1)11a9;(2)-61.【解题分析】

(1)根据指数幂和同底数幂的乘除运算,即可得到答案;(2)根据完全平方公式和多项式乘以多项式的性质,进行计算即可得到答案.【题目详解】(1)根据指数幂和同底数幂的乘除运算,则原式==11a9;(2)解:根据完全平方公式和多项式乘以多项式的性质,则原式==;当a=-1,b=1时,原式==-61.【题目点拨】本题考查指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质,解题的关键是熟练掌握指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质.22、(1)A种商品400件,B种商品200件;(2)有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【解题分析】

(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据总价=单价×数量结合用14000元从外地购进A、B两种商品共600件,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,由要一次性将A、B两种商品运往某城市,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再结合a为整数,即可找出各租车方案.【题目详解】解:(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据题意得:解得:.答:该民营企业从外地购得A种商品400件,B种商品200件.(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,根据题意得:,解得:≤a≤,∵a为整数,∴a=3或4,∴有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【题目点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论