




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第53讲离散型随机变量的分布列、均值与方差【学科素养】1.结合离散型随机变量及其分布列的概念,考查常见离散型分布列的求法,凸显数据分析、数学运算的核心素养.2.结合具体实例,考查超几何分布的特征及应用,凸显数学建模的核心素养.3.理解取有限个值的离散型随机变量的均值、方差的概念,会求简单的离散型随机变量的均值、方差,凸显数学运算的核心素养.4.能利用离散型随机变量的均值、方差的概念解决一些简单实际问题,凸显数学建模的核心素养.【课标解读】1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性.2.会求某些取有限个值的离散型随机变量的分布列.3.了解超几何分布并能进行简单的应用.4.理解取有限个值的离散型随机变量的均值、方差的概念.5.会求简单的离散型随机变量的均值、方差.6.能利用离散型随机变量的均值、方差的概念解决一些简单实际问题.【备考策略】从近三年高考情况来看,本讲一直是高考中的热点内容.预测2022年将会考查:①与排列组合及统计知识结合的分布列;②与独立重复事件结合的分布列.试题以解答题的形式呈现,以现实生活中的事例为背景进行考查,试题难度不大,属中档题型.【核心知识】1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,ξ,η,…表示.(2)离散型随机变量:所有取值可以一一列出的随机变量.2.离散型随机变量分布列的概念、性质及均值方差(1)概念:若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式表示如下:Xx1x2…xi…xnPp1p2…pi…pn此表称为离散型随机变量X的概率分布列,简称为X的分布列.有时也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.(2)分布列的性质:①pieq\a\vs4\al(≥)0,i=1,2,3,…,n;②eq\o(∑,\s\up6(n),\s\do4(i=1))pi=eq\a\vs4\al(1).(3)称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(4)称D(X)=eq\o(∑,\s\up6(n),\s\do4(i=1))(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根eq\r(DX)为随机变量X的标准差.3.常见的离散型随机变量的分布列(1)两点分布X01P1-pp若随机变量X的分布列具有上表的形式,则称X服从两点分布,并称p=P(X=1)为成功概率.(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.X01…mPeq\f(C\o\al(0,M)C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.4.均值与方差的性质若Y=aX+b,其中a,b是常数,X是随机变量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)-[E(X)]2;(5)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2);(6)若X服从两点分布,则E(X)=p,D(X)=p(1-p);(7)若X服从二项分布,即X~B(n,p),则E(X)=np,D(X)=np(1-p);(8)若X服从超几何分布,即X~H(N,M,n),则E(X)=eq\f(nM,N),D(X)=eq\f(nMN-MN-n,N2N-1);(9)若X~N(μ,σ2),则X的均值与方差分别为E(X)=μ,D(X)=σ2.【高频考点】高频考点一离散型随机变量的分布列【例1】(2023·全国高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个.(1)用表示取到的豆沙粽的个数,求的分布列;(2)求选取的2个中至少有1个豆沙粽的概率.【变式探究】离散型随机变量X的概率分布规律为P(X=n)=eq\f(a,nn+1)(n=1,2,3,4),其中a是常数,则Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<X<\f(5,2)))的值为()A.eq\f(2,3) B.eq\f(3,4)C.eq\f(4,5) D.eq\f(5,6)【方法技巧】离散型随机变量分布列性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内取值的概率时,根据分布列,将所求范围内随机变量的各个取值的概率相加即可,其依据是互斥事件的概率加法公式.【变式探究】一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续抽取,求抽取次数ξ的分布列.【方法技巧】求离散型随机变量X的分布列的步骤(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列.【特别提醒】求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.【举一反三】某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.高频考点二离散型随机变量的均值与方差【例2】(2023·浙江高考真题)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则___________,___________.【变式探究】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望与方差.【方法技巧】求离散型随机变量均值与方差的关键及注意(1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.【变式探究】某投资公司在2019年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为eq\f(7,9)和eq\f(2,9);项目二:5G通信设备.受中美贸易战的影响,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为eq\f(3,5),eq\f(1,3)和eq\f(1,15).针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.【方法技巧】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式探究】(2023·全国高考真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.(1)求,,,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).高频考点三超几何分布【例3】某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.【变式探究】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每门科目满分均为100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取n名学生进行调查,其中,女生抽取45人.(1)求n的值.(2)学校计划在高一上学期开设选修中的“物理”和“地理”两门科目,为了了解学生对这两门科目的选课情况,对抽取到的n名学生进行问卷调查(假定每名学生在“物理”和“地理”这两门科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的2×2列联表,请将下面的2×2列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由.选择“物理”选择“地理”总计男生10女生25总计(3)在抽取到的45名女生中,按(2)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中抽取4人,设这4人中选择“物理”的人数为X,求X的分布列及数学期望.附:K2=eq\f(nad-bc2,a+ba+cc+db+d),n=a+b+c+d.P(K2≥k0)0.050.010.0050.001k03.8416.6357.87910.828第53讲离散型随机变量的分布列、均值与方差【学科素养】1.结合离散型随机变量及其分布列的概念,考查常见离散型分布列的求法,凸显数据分析、数学运算的核心素养.2.结合具体实例,考查超几何分布的特征及应用,凸显数学建模的核心素养.3.理解取有限个值的离散型随机变量的均值、方差的概念,会求简单的离散型随机变量的均值、方差,凸显数学运算的核心素养.4.能利用离散型随机变量的均值、方差的概念解决一些简单实际问题,凸显数学建模的核心素养.【课标解读】1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性.2.会求某些取有限个值的离散型随机变量的分布列.3.了解超几何分布并能进行简单的应用.4.理解取有限个值的离散型随机变量的均值、方差的概念.5.会求简单的离散型随机变量的均值、方差.6.能利用离散型随机变量的均值、方差的概念解决一些简单实际问题.【备考策略】从近三年高考情况来看,本讲一直是高考中的热点内容.预测2022年将会考查:①与排列组合及统计知识结合的分布列;②与独立重复事件结合的分布列.试题以解答题的形式呈现,以现实生活中的事例为背景进行考查,试题难度不大,属中档题型.【核心知识】1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,ξ,η,…表示.(2)离散型随机变量:所有取值可以一一列出的随机变量.2.离散型随机变量分布列的概念、性质及均值方差(1)概念:若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式表示如下:Xx1x2…xi…xnPp1p2…pi…pn此表称为离散型随机变量X的概率分布列,简称为X的分布列.有时也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.(2)分布列的性质:①pieq\a\vs4\al(≥)0,i=1,2,3,…,n;②eq\o(∑,\s\up6(n),\s\do4(i=1))pi=eq\a\vs4\al(1).(3)称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(4)称D(X)=eq\o(∑,\s\up6(n),\s\do4(i=1))(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根eq\r(DX)为随机变量X的标准差.3.常见的离散型随机变量的分布列(1)两点分布X01P1-pp若随机变量X的分布列具有上表的形式,则称X服从两点分布,并称p=P(X=1)为成功概率.(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.X01…mPeq\f(C\o\al(0,M)C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.4.均值与方差的性质若Y=aX+b,其中a,b是常数,X是随机变量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)-[E(X)]2;(5)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2);(6)若X服从两点分布,则E(X)=p,D(X)=p(1-p);(7)若X服从二项分布,即X~B(n,p),则E(X)=np,D(X)=np(1-p);(8)若X服从超几何分布,即X~H(N,M,n),则E(X)=eq\f(nM,N),D(X)=eq\f(nMN-MN-n,N2N-1);(9)若X~N(μ,σ2),则X的均值与方差分别为E(X)=μ,D(X)=σ2.【高频考点】高频考点一离散型随机变量的分布列【例1】(2023·全国高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个.(1)用表示取到的豆沙粽的个数,求的分布列;(2)求选取的2个中至少有1个豆沙粽的概率.【答案】(1)分布列见解析;(2).【解析】(1)由条件可知,,,,所以的分布列,如下表,(2)选取的2个中至少有1个豆沙粽的对立事件是一个都没有,则选取的2个中至少有1个豆沙粽的概率.【变式探究】离散型随机变量X的概率分布规律为P(X=n)=eq\f(a,nn+1)(n=1,2,3,4),其中a是常数,则Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<X<\f(5,2)))的值为()A.eq\f(2,3) B.eq\f(3,4)C.eq\f(4,5) D.eq\f(5,6)【解析】由eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,1×2)+\f(1,2×3)+\f(1,3×4)+\f(1,4×5)))×a=1,知eq\f(4,5)a=1,得a=eq\f(5,4).故Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<X<\f(5,2)))=P(X=1)+P(X=2)=eq\f(1,2)×eq\f(5,4)+eq\f(1,6)×eq\f(5,4)=eq\f(5,6).【答案】D【方法技巧】离散型随机变量分布列性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内取值的概率时,根据分布列,将所求范围内随机变量的各个取值的概率相加即可,其依据是互斥事件的概率加法公式.【变式探究】一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续抽取,求抽取次数ξ的分布列.【解析】(1)记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,∵f1(x),f3(x),f4(x)为奇函数,∴从中任取两个相加即可得到一个奇函数.故P(A)=eq\f(C\o\al(2,3),C\o\al(2,6))=eq\f(1,5).(2)易知ξ的所有可能取值为1,2,3,4.P(ξ=1)=eq\f(C\o\al(1,3),C\o\al(1,6))=eq\f(1,2),P(ξ=2)=eq\f(C\o\al(1,3),C\o\al(1,6))·eq\f(C\o\al(1,3),C\o\al(1,5))=eq\f(3,10),P(ξ=3)=eq\f(C\o\al(1,3),C\o\al(1,6))·eq\f(C\o\al(1,2),C\o\al(1,5))·eq\f(C\o\al(1,3),C\o\al(1,4))=eq\f(3,20),P(ξ=4)=eq\f(C\o\al(1,3),C\o\al(1,6))·eq\f(C\o\al(1,2),C\o\al(1,5))·eq\f(C\o\al(1,1),C\o\al(1,4))·eq\f(C\o\al(1,3),C\o\al(1,3))=eq\f(1,20).故ξ的分布列为ξ1234Peq\f(1,2)eq\f(3,10)eq\f(3,20)eq\f(1,20)【方法技巧】求离散型随机变量X的分布列的步骤(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列.【特别提醒】求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.【举一反三】某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.【解析】(1)设事件A:选派的3人中恰有2人会法语,则P(A)=eq\f(C\o\al(2,5)C\o\al(1,2),C\o\al(3,7))=eq\f(4,7).(2)依题意知,X服从超几何分布,X的可能取值为0,1,2,3,P(X=0)=eq\f(C\o\al(3,4),C\o\al(3,7))=eq\f(4,35),P(X=1)=eq\f(C\o\al(2,4)C\o\al(1,3),C\o\al(3,7))=eq\f(18,35),P(X=2)=eq\f(C\o\al(1,4)C\o\al(2,3),C\o\al(3,7))=eq\f(12,35),P(X=3)=eq\f(C\o\al(3,3),C\o\al(3,7))=eq\f(1,35),∴X的分布列为X0123Peq\f(4,35)eq\f(18,35)eq\f(12,35)eq\f(1,35)高频考点二离散型随机变量的均值与方差【例2】(2023·浙江高考真题)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则___________,___________.【答案】1【解析】,所以,,所以,则.由于.【变式探究】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望与方差.【解析】(1)由已知,有P(A)=eq\f(C\o\al(1,3)C\o\al(1,4)+C\o\al(2,3),C\o\al(2,10))=eq\f(1,3),所以事件A发生的概率为eq\f(1,3).(2)随机变量X的所有可能取值为0,1,2.P(X=0)=eq\f(C\o\al(2,3)+C\o\al(2,3)+C\o\al(2,4),C\o\al(2,10))=eq\f(4,15),P(X=1)=eq\f(C\o\al(1,3)C\o\al(1,3)+C\o\al(1,3)C\o\al(1,4),C\o\al(2,10))=eq\f(7,15),P(X=2)=eq\f(C\o\al(1,3)C\o\al(1,4),C\o\al(2,10))=eq\f(4,15).所以随机变量X的分布列为X012Peq\f(4,15)eq\f(7,15)eq\f(4,15)随机变量X的数学期望E(X)=0×eq\f(4,15)+1×eq\f(7,15)+2×eq\f(4,15)=1.方差D(X)=eq\f(4,15)×(0-1)2+eq\f(7,15)×(1-1)2+eq\f(4,15)×(2-1)2=eq\f(8,15).【方法技巧】求离散型随机变量均值与方差的关键及注意(1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.【变式探究】某投资公司在2019年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为eq\f(7,9)和eq\f(2,9);项目二:5G通信设备.受中美贸易战的影响,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为eq\f(3,5),eq\f(1,3)和eq\f(1,15).针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.【解析】若按“项目一”投资,设获利为X1万元,则X1的分布列为X1300-150Peq\f(7,9)eq\f(2,9)∴E(X1)=300×eq\f(7,9)+(-150)×eq\f(2,9)=200(万元).若按“项目二”投资,设获利X2万元,则X2的分布列为X2500-3000Peq\f(3,5)eq\f(1,3)eq\f(1,15)∴E(X2)=500×eq\f(3,5)+(-300)×eq\f(1,3)+0×eq\f(1,15)=200(万元).D(X1)=(300-200)2×eq\f(7,9)+(-150-200)2×eq\f(2,9)=35000,D(X2)=(500-200)2×eq\f(3,5)+(-300-200)2×eq\f(1,3)+(0-200)2×eq\f(1,15)=140000,E(X1)=E(X2),D(X1)<D(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.【方法技巧】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式探究】(2023·全国高考真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.(1)求,,,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】(1),,,.(2)依题意,,,,所以新设备生产产品的该项指标的均值较旧设备有显著提高.高频考点三超几何分布【例3】某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.【解析】(1)设事件A:选派的3人中恰有2人会法语,则P(A)=eq\f(C\o\al(2,5)C\o\al(1,2),C\o\al(3,7))=eq\f(4,7).(2)依题意知,X服从超几何分布,X的可能取值为0,1,2,3,P(X=0)=eq\f(C\o\al(3,4),C\o\al(3,7))=eq\f(4,35),P(X=1)=eq\f(C\o\al(2,4)C\o\al(1,3),C\o\al(3,7))=eq\f(18,35),P(X=2)=eq\f(C\o\al(1,4)C\o\al(2,3),C\o\al(3,7))=eq\f(12,35),P(X=3)=eq\f(C\o\al(3,3),C\o\al(3,7))=eq\f(1,35),∴X的分布列为X0123Peq\f(4,35)eq\f(18,35)eq\f(12,35)eq\f(1,35)【变式探究】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国随身携带的照相机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国防滑钉鞋行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国银杏叶素茶行业市场深度分析及发展趋势与投资研究报告
- 2025-2030中国钴57行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国钒铁行业市场运行分析及前景趋势与投资研究报告
- 2025-2030中国透气款鞋行业市场深度调研及发展趋势与投资价值评估研究报告
- 2025-2030中国跑道照明系统行业市场发展趋势与前景展望战略研究报告
- 《风之彩绘巧做纸鸢》(教案)-2024-2025学年四年级上册劳动人教版
- 2025-2030中国薄荷油和提取物行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国蒸汽压力机行业市场发展趋势与前景展望战略研究报告
- 2025届上海市浦东新区高三二模英语试卷(含答案)
- 【MOOC】航空燃气涡轮发动机结构设计-北京航空航天大学 中国大学慕课MOOC答案
- 职业卫生评价考试计算题汇总
- 中国古代文学史(二)正式课件
- 物业管理服务品质检查表
- JJF 1318-2011 影像测量仪校准规范-(高清现行)
- 动火安全作业票填写模板2022年更新
- 2021年12月英语六级听力试题、原文及答案 两套
- 北师版七年级下册数学 第1章 1.6.2 目标三 整式的化简求值 习题课件
- 《贸易商务英语》课件Unit 4 Change
- TCWAN 0027-2022 TCEEIA 584-2022 新能源汽车铝合金电池托盘焊接制造规范
评论
0/150
提交评论