版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省湘钢一中数学高二下期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A.625 B.310 C.32.如果函数f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f'(x1A.(13,12)B.(32,3)C.(13.在中,,,.将绕旋转至另一位置(点转到点),如图,为的中点,为的中点.若,则与平面所成角的正弦值是()A. B. C. D.4.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,1AC=AA1=BC=1.若二面角B1-DC-C1的大小为60°,则AD的长为()A.2B.3C.1D.25.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为().A. B.C. D.6.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.7.已知,,若包含于,则实数的取值范围是()A. B. C. D.8.下面是关于复数(i为虚数单位)的四个命题:①对应的点在第一象限;②;③是纯虚数;④.其中真命题的个数为()A.1 B.2 C.3 D.49.在高台跳水运动中,时相对于水面的高度(单位:)是,则该高台跳水运动员在时瞬时速度的大小为()A. B. C. D.10.已知直线与曲线相切,则实数k的值为()A. B.1 C. D.11.复数A. B. C. D.12.“因为指数函数是增函数(大前提),而是指数函数(小前提),所以函数是增函数(结论)”,上面推理的错误在于A.大前提错误导致结论错 B.小前提错误导致结论错C.推理形式错误导致结论错 D.大前提和小前提错误导致结论错二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,项的系数为______.(用数字作答)14.,,若,则实数的值为_______.15.在中,角,,的对边分别是,,,,若,则的周长为__________.16.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角所对的边分别为,且.(1)求角;(2)若,的面积为,求的值.18.(12分)在直角坐标系中,曲线:(为参数),直线:(为参数).(1)判断直线与曲线的位置关系;(2)点是曲线上的一个动点,求到直线的距离的最大值.19.(12分)已知抛物线的焦点为,圆与轴的一个交点为,圆的圆心为,为等边三角形.(1)求抛物线的方程(2)设圆与抛物线交于、两点,点为抛物线上介于、两点之间的一点,设抛物线在点处的切线与圆交于、两点,在圆上是否存在点,使得直线、均为抛物线的切线,若存在求点坐标(用、表示);若不存在,请说明理由.20.(12分)已知,不等式的解集是.()求的值.()若存在实数解,求实数的取值范围.21.(12分)已知椭圆:的左焦点,离心率为,点为椭圆上任一点,且的最小值为.(1)求椭圆的方程;(2)若直线过椭圆的左焦点,与椭圆交于两点,且的面积为,求直线的方程.22.(10分)已知,.(1)证明:.(2)证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率.【题目详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为12故答案选D【题目点拨】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题.2、C【解题分析】试题分析:f'(x)=3x2-2x,f(a)-f(0)a-0=a2-a,所以函数f(x)=x3-x2+a是区间[0,a]上的“双中值函数”等价于f'考点:1.新定义问题;2.函数与方程;3.导数的运算法则.【名师点睛】本题考查新定义问题、函数与方程、导数的运算法则以及学生接受鷴知识的能力与运用新知识的能力,难题.新定义问题是命题的新视角,在解题时首先是把新定义问题中的新的、不了解的知识通过转翻译成了解的、熟悉的知识,然后再去求解、运算.3、B【解题分析】
由题意画出图形,证明平面,然后找出与平面所成角,求解三角形得出答案.【题目详解】解:如图,由题意可知,,又,,,即,,分别为,的中点,.,,而,平面.延长至,使,连接,则与全等,可得平面.为与平面所成角,在中,由,,可得.故选:B.【题目点拨】本题考查直线与平面所成角,考查空间想象能力与思维能力,属于中档题.4、A【解题分析】如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,1,1),C1(0,0,1),设AD=a,则D点坐标为(1,0,a),CD=(1,0,a),CB设平面B1CD的一个法向量为m=(x,y,z).则CB1⋅m=0得m=(a,1,-1),又平面C1DC的一个法向量为n(0,1,0),则由cos60°=m⋅n|m|⋅|n|,得1a2+2=125、C【解题分析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.6、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.7、B【解题分析】
解一元二次不等式求得集合,根据是的子集列不等式,由此求得的取值范围.【题目详解】由解得,所以,由于且包含于,所以,故的取值范围是.故选:B【题目点拨】本小题主要考查一元二次不等式的解法,考查根据包含关系求参数的取值范围,属于基础题.8、B【解题分析】
求出z的坐标判断①;求出判断②;求得的值判断③;由两虚数不能进行大小比较判断④.【题目详解】∵,∴z对应的点的坐标为(1,1),在第一象限,故①正确;,故②错误;,为纯虚数,故③正确;∵两虚数不能进行大小比较,故④错误.∴其中真命题的个数为2个.故选:B.【题目点拨】本题考查复数的基本概念,考查复数的代数表示法及其几何意义,考查复数模的求法,是基础题.9、C【解题分析】
根据瞬时速度就是的导数值即可求解.【题目详解】由,则,当时,.故选:C【题目点拨】本题考查了导数的几何意义,同时考查了基本初等函数的导数以及导数的运算法则,属于基础题.10、D【解题分析】由得,设切点为,则,,,,对比,,,故选D.11、C【解题分析】,故选D.12、A【解题分析】试题分析:大前提:指数函数是增函数错误,只有在时才是增函数考点:推理三段论二、填空题:本题共4小题,每小题5分,共20分。13、-30【解题分析】
由题意利用幂的意义,组合数公式,求得项的系数.【题目详解】,表示个因式的积,要得到含项,需个因式选,个因式选,其余的个因式选即可.展开式中,项的系数为.故答案为:-30【题目点拨】本题考查了二项式定理、组合数公式,需熟记公式,属于基础题.14、1【解题分析】
由题得,解方程即得的值.【题目详解】由题得,解之得=1.当=1时两直线平行.故答案为:115、【解题分析】由题意,所以,且由余弦定理,得,所以所以的周长为.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.16、8【解题分析】
双曲线:的右焦点到渐近线的距离为4,可得的值,由条件以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.即,根据可求得答案.【题目详解】由题意可得双曲线的一条渐近线方程为,由焦点到渐近线的距离为4,即,即.双曲线上到的距离为2的点有且仅有1个,即以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.所以,又即,即,所以.所以双曲线的右顶点到左焦点的距离为.所以这个点到双曲线的左焦点的距离为8.故答案为:8【题目点拨】本题考查双曲线的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)可通过化简计算出的值,然后解出的值。(2)可通过计算和的值来计算的值。【题目详解】(1)由得,又,所以,得,所以。(2)由的面积为及得,即,又,从而由余弦定理得,所以,所以。【题目点拨】本题考察的是对解三角函数的综合运用,需要对相关的公式有着足够的了解。18、(1)直线与曲线相离(2)【解题分析】
(1)先分别求出曲线C和直线l的普通方程,再联立求,判断位置关系;(2)由点到直线的距离公式可得点P到直线l的距离最大值。【题目详解】解:(1)曲线的普通方程为,直线的普通方程为.由,得,因为,所以直线与曲线相离.(2)设点,则到直线:的距离(其中),所以到直线的距离的最大值为.【题目点拨】本题考查参数化为普通方程,以及用点到直线的距离公式求曲线上动点到直线的最大值。19、(1);(2)存在圆上一点满足、均为为抛物线的切线,详见解析.【解题分析】
(1)将圆的方程表示为标准方程,得出其圆心的坐标,求出点的坐标,求出抛物线的焦点的坐标,然后由为等边三角形得出为圆的半径可求出的值,进而求出抛物线的方程;(2)设、,设切线、的方程分别为和,并写出抛物线在点的切线方程,设,并设过点的直线与抛物线相切,利用可求出、的表达式,从而可用表示直线、,然后求出点的坐标,检验点的坐标满足圆的方程,即可得出点的存在性,并得出点的坐标.【题目详解】(1)圆的标准方程为,则点,抛物线的焦点为,为等边三角形,则,即,解得,因此,抛物线;(2)设、.过点、作抛物线的两条切线(异于直线)交于点,并设切线,,由替换法则,抛物线在点处的切线方程为,即,记,①设过点的直线与抛物线相切,代入抛物线方程,得,,即,,,由①可得,,,②,同理可得,,切线,,联立两式消去可得,,③代入可得,代入②有,,联立与圆可得,,,分别代入③、④可得,,,即切线、的交点在圆上,故存在圆上一点,满足、均为抛物线的切线.【题目点拨】本题考查抛物线方程的求解,同时也考查了直线与抛物线的位置关系,抛物线的切线方程,同时也考查了韦达定理,解题的关键就是直线与抛物线相切,得出切线斜率倒数之间的关系,考查计算能力,属于难题.20、(1),(2).【解题分析】试题分析:(1)通过讨论a的范围,求出不等式的解集,根据对应关系求出a的值即可;(2)根据不等式的性质求出最小值,得到关于k的不等式,解出即可.解析:(1)由,得,即,当时,,所以,解得;当时,,所以无解.所以.(2)因为,所以要使存在实数解,只需,所以实数的取值范围是.点睛:本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,以及函数恒成立求参的方法.21、(1)(2)或.【解题分析】
(1)设椭圆的标准方程为:1(a>b>0),由离心率为,点P为椭圆C上任意一点,且|PF|的最小值为1,求出a2=2,b2=1,由此能求出椭圆C的方程;(2)设的方程为:,代入得:,由弦长公式与点到线的距离公式分别求得,由面积公式得的方程即可求解【题目详解】(1)设椭圆的标准方程为:1(a>b>0),∵离心率为,∴,∴a,∵点P为椭圆C上任意一点,且|PF|的最小值为1,∴c=1,∴a2=b2+c2=b2+1,解得a2=2,b2=1,∴椭圆C的方程为1.(2)因,与轴不重合,故设的方程为:,代入得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护小手课件
- 中职护理礼仪教育课件
- 新闻宣传战略合作协议书(2篇)
- 施工安全协议书(2篇)
- 混凝土公司安全生产协议书
- 物业服务岗位职责培训
- 九年级上册物理课件下载
- 《如何带好创业团队》课件
- 职业监看培训
- 沿街商铺消防安全知识
- 小学数学西南师大五年级上册四小数混合运算 问题解决 省赛获奖
- 2019新人教版高中生物必修二全册重点知识点归纳总结(遗传与进化复习必背)
- 《网络心理学》第七课 网络与记忆 何凌南 13-11-8课件
- 冷食加工流程图3.2.1
- 集训营quite a number of things have been done一、破冰方案
- 园林绿化苗木、种子进场报验表
- 北京科技大学第二批非教学科研岗位招考聘用(必考题)模拟卷
- 竣工决算审计服务方案
- 小学科学苏教版六年级上册《3.2铁钉生锈了》教学课件
- 现在完成时与现在完成进行时 完整版课件
- 高二数学期中质量分析
评论
0/150
提交评论