山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题含解析_第1页
山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题含解析_第2页
山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题含解析_第3页
山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题含解析_第4页
山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市五莲县2024届高二数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线y=x与曲线y=xA.52 B.32 C.22.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种3.函数的递增区间为()A. B. C. D.4.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为5.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A.若m∥n,m⊂α,则n∥α B.若m⊥α,m⊥β,则α∥βC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若α∩β=m,n∥m,则n∥β6.已知,那么()A.20 B.30 C.42 D.727.若执行如图所示的程序框图,则输出S的值为()A. B. C. D.8.设随机变量服从二项分布,则函数存在零点的概率是()A. B. C. D.9.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是()附:1.111.151.1111.1152.7163.8416.6357.879A.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动无关10.随机变量服从二项分布,且,则等于()A. B. C. D.11.形状如图所示的2个游戏盘中(图①是半径为2和4的两个同心圆,O为圆心;图②是正六边形,点P为其中心)各有一个玻璃小球,依次摇动2个游戏盘后,将它们水平放置,就完成了一局游戏,则一局游戏后,这2个盘中的小球都停在阴影部分的概率是()A. B. C. D.12.下列表格可以作为ξ的分布列的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知全集,集合,,则______.14.已知的展开式中,的系数为,则常数的值为.15.过原点作一条倾斜角为的直线与椭圆交于、两点,为椭圆的左焦点,若,且该椭圆的离心率,则的取值范围为__________.16.函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是梯形,,,底面点是的中点.(Ⅰ)证明:;(Ⅱ)若且与平面所成角的大小为,求二面角的正弦值.18.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称为“鳖臑”.如图,在“阳马”中,侧棱底面,且,过棱的中点,作交于点,连接.(1)证明:平面.试判断四面体是否为“鳖臑”,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若,求直线与平面所成角的正切值.19.(12分)已知命题,命题或,若是q的充分不必要条件,求实数的取值范围.20.(12分)已知,,.求与的夹角;若,,,,且与交于点,求.21.(12分)在直角坐标系xOy中,已知倾斜角为α的直线l过点A(2,1).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ=2sinθ,直线l与曲线C分别交于P,Q两点.(1)写出直线l的参数方程和曲线C的直角坐标方程.(2)求|AP|•|AQ|的值.22.(10分)甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:甲企业:分组频数5乙企业:分组频数55(1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到)(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.甲厂乙厂总计优质品非优质品总计附:参考数据:,参考公式:若,则,,;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【题目详解】y=x与曲线y=xS=0故选:D.【题目点拨】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属于基础题.2、B【解题分析】

根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【题目点拨】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.3、D【解题分析】∵f(x)=lnx−4x+1定义域是{x|x>0}∵当f′(x)>0时,.本题选择D选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k,把所求问题转化为求函数的最小值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4、A【解题分析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.5、B【解题分析】

在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得α∥β;在C中,举反例即可判断判断;在D中,据线面平行的判定判断正误;【题目详解】对于A,若m∥n,m⊂α,则n∥α或n⊂α,故A错;对于B,若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;对于C,不妨令α∥β,m在β内的射影为m′,则当m′⊥n时,有m⊥n,但α,β不垂直,故C错误;对于D,若α∩β=m,n∥m,则n∥β或n⊂β,故D错.故选:B.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.6、B【解题分析】

通过计算n,代入计算得到答案.【题目详解】答案选B【题目点拨】本题考查了排列数和组合数的计算,属于简单题.7、C【解题分析】

首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【题目详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【题目点拨】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.8、C【解题分析】

因为函数存在零点,所以..【题目详解】∵函数存在零点,∴,∴.∵服从,∴.故选【题目点拨】本题主要考查独立重复试验的概率求法以及二项分布,熟记公式是解题的关键,属于简单题.9、A【解题分析】

根据临界值表找到犯错误的概率,即可对各选项结论的正误进行判断.【题目详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选A.【题目点拨】本题考查独立性检验的基本思想,解题的关键就是利用临界值表找出犯错误的概率,考查分析能力,属于基础题.10、B【解题分析】因为,所以,解得.即等于.故选B.11、A【解题分析】

先计算两个图中阴影面积占总面积的比例,再利用相互独立事件概率计算公式,可求概率.【题目详解】一局游戏后,这2个盘中的小球停在阴影部分分别记为事件,,由题意知,,相互独立,且,,所以“一局游戏后,这2个盘中的小球都停在阴影部分”的概率为.故选A.【题目点拨】本题考查几何概型及相互独立事件概率的求法,考查了分析解决问题的能力,属于基础题.12、C【解题分析】

根据分布列的性质以及各概率之和等于1,能求出正确结果.【题目详解】根据分布列的性质以及各概率之和等于1,在中,各概率之和为,故错误;在中,,故错误;在中,满足分布列的性质以及各概率之和等于1,故正确;在中,,故错误.故选:.【题目点拨】本题考查离散型随机变量的分布列的判断,考查分布列的性质以及各概率之和等于1等基础知识,考查运用求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用集合补集和交集的定义直接求解即可.【题目详解】因为全集,集合,,所以.故答案为:【题目点拨】本题考查了集合的补集、交集的定义,属于基础题.14、【解题分析】,所以由得,从而点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.15、【解题分析】设右焦点F′,连结AF′,BF′,得四边形AFBF′是正方形,∵AF+AF′=2a,AF+BF=2a,OF=c,∴AB=2c,∵∠BAF=θ,∴AF=2c•cos,BF=2c•sin,∴2csin+2ccos=2a,∵该椭圆的离心率,∴∵θ∈[0,π),∴的取值范围为.点睛:本题主要考查椭圆的标准方程与几何性质.有关椭圆的离心率问题的关键是利用图形中的几何条件构造的关系,解决椭圆离心率的相关问题的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.16、{a|a<﹣3或a>6}【解题分析】

求出有两个不相等的实数解,即可求出结论.【题目详解】函数有极值,则有两个不相等的实数解,,或.故答案为:或.【题目点拨】本题考查极值存在求参数,熟练掌握三次函数图像特征及性质是解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】

(I)根据已知条件得到,,由此证得平面.从而证得,结合,证得平面,进而证得.(II)作出与平面所成的角,通过线面角的大小计算出有关的边长,作出二面角的平面角,解直角三角形求得二面角的正弦值.【题目详解】(Ⅰ)证明:因为平面,平面,所以.又由是梯形,,,知,而,平面,平面,所以平面.因为平面,所以.又,点是的中点,所以.因为,平面,平面,所以平面.因为平面,所以.(Ⅱ)解:如图所示,过作于,连接,因为平面,平面,所以,则平面,于是平面平面,它们的交线是.过作于,则平面,即在平面上的射影是,所以与平面所成的角是.由题意,.在直角三角形中,,于是.在直角三角形中,,所以.过作于,连接,由三垂线定理,得,所以为二面角的平面角,在直角三角形中,,.在直角三角形中,,所以二面角的正弦值为.【题目点拨】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查线面角的应用,考查面面角的求法,属于中档题.18、(1)证明见解析,是“鳖臑”,四个直角分别为,,,;(2)【解题分析】

(1)先证明面,可得,然后结合即可证明面,然后再证明面,即可得出四面体的四个面都是直角三角形(2)如图所示建立空间直角坐标系,是面的一个法向量,然后利用算出即可.【题目详解】(1)由面,面得,又,从而面,因为面所以由得面由面,面得,又,从而面可知四面体的四个面都是直角三角形,即四面体是“鳖臑”,四个直角分别为,,,(2)如图所示建立空间直角坐标系,,,,由面可知,是面的一个法向量,设直线与面所成角为,,,即直线与平面所成角的正切值为【题目点拨】向量法是求立体几何中的线线角、线面角、面面角常用的方法.19、【解题分析】

根据题意,求出表示的集合,利用是q的充分不必要条件得到集合间的包含关系,进而得到关于的不等式组,解不等式即可.【题目详解】由题意知,或,因为是q的充分不必要条件,所以或或,所以,所以实数的取值范围为.【题目点拨】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题.20、;.【解题分析】

化简得到,再利用夹角公式得到答案.,根据向量关系化简得到,再平方得到得到答案.【题目详解】,.又,,,..又,.,,,,.【题目点拨】本题考查了向量的计算,将表示出来是解题的关键,意在考查学生对于向量公式的灵活运用和计算能力.21、(1);x2+y2=2y;(2)3【解题分析】

(1)由直线的倾斜角与所过定点写出直线的参数方程,再利用极坐标与直角坐标的互化公式,求得曲线的直角坐标方程,即可得到答案.(2)将直线的参数方程代入曲线的方程,得到关于的一元二次方程,再由根与系数的关系,以及的几何意义,即可求解的值.【题目详解】(1)由题意知,倾斜角为α的直线l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论