2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题含解析_第1页
2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题含解析_第2页
2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题含解析_第3页
2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题含解析_第4页
2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省酒泉市敦煌中学高二数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列an中,则anA.3333 B.7777 C.33333 D.777772.设随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若,则,)A.7539 B.7028 C.6587 D.60383.设实数,则下列不等式一定正确的是()A. B.C. D.4.如图分别是椭圆的两个焦点,和是以为圆心,以为半径的圆与该左半椭圆的两个交点,且是等边三角形,则椭圆的离心率为()A. B. C. D.5.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.86.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为()()A. B. C. D.7.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有A.21种B.315种C.153种D.143种8.已知的三边满足条件,则()A. B. C. D.9.已知函数在区间上是单调递增函数,则的取值范围是()A. B. C. D.10.在三棱锥P-ABC中,,,,若过AB的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的正弦值为()A. B. C. D.11.抛物线的焦点坐标为()A. B. C. D.12.设,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.当时,等式恒成立,根据该结论,当时,,则的值为___________.14.已知,,则________15.已知函数只有一个零点,则__________.16.随机变量的分布列如下表:01Pab且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校从参加高二年级期末考试的学生中随机抽取了名学生,已知这名学生的历史成绩均不低于60分(满分为100分).现将这名学生的历史成绩分为四组:,,,,得到的频率分布直方图如图所示,其中历史成绩在内的有28名学生,将历史成绩在内定义为“优秀”,在内定义为“良好”.(Ⅰ)求实数的值及样本容量;(Ⅱ)根据历史成绩是否优秀,利用分层抽样的方法从这名学生中抽取5名,再从这5名学生中随机抽取2名,求这2名学生的历史成绩均优秀的概率;(Ⅲ)请将列联表补充完整,并判断是否有的把握认为历史成绩是否优秀与性别有关?男生女生合计优秀良好20合计60参考公式及数据:(其中).18.(12分)设为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,与满足(1)求的值;(2)求的展开式中的系数。19.(12分)观察以下等式:13=1213+23=(1+2)213+23+33=(1+2+3)213+23+33+43=(1+2+3+4)2(1)请用含n的等式归纳猜想出一般性结论,并用数学归纳法加以证明.(2)设数列{an}的前n项和为Sn,且an=n3+n,求S1.20.(12分)2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?有兴趣没有兴趣合计男女合计(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.附:21.(12分)已知分别为椭圆的左右焦点,上顶点为,且的周长为,且长轴长为4.(1)求椭圆的方程;(2)已知,若直线与椭圆交于两点,求.22.(10分)已知数列中,,。(1)证明数列为等差数列,并求数列的通项公式;(2)求数列的前项和。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

分别计算a1、a2、a3归纳出an的表达式,然后令【题目详解】∵an=11⋯1︸a3猜想,对任意的n∈N*,an=11⋯1【题目点拨】本题考查归纳推理,解归纳推理的问题的思路就由特殊到一般,寻找出规律,根据规律进行归纳,考查逻辑推理能力,属于中等题。2、C【解题分析】

由题意正方形的面积为,再根据正态分布曲线的性质,求得阴影部分的面积,利用面积比的几何概型求得落在阴影部分的概率,即可求解,得到答案.【题目详解】由题意知,正方形的边长为1,所以正方形的面积为又由随机变量服从正态分布,所以正态分布密度曲线关于对称,且,又由,即,所以阴影部分的面积为,由面积比的几何概型可得概率为,所以落入阴影部分的点的个数的估计值是,故选C.【题目点拨】本题主要考查了正态分布密度曲线的性质,以及面积比的几何概型的应用,其中解答中熟记正态分布密度曲线的性质,准确求得落在阴影部分的概率是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解题分析】

对4个选项分别进行判断,即可得出结论.【题目详解】解:由于a>b>0,,A错;当0<c<1时,ca<cb;当c=1时,ca=cb;当c>1时,ca>cb,故ca>cb不一定正确,B错;a>b>0,c>0,故ac﹣bc>0,C错.,D对;故选D.【题目点拨】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.4、D【解题分析】

根据等边三角形的性质,求得A点坐标,代入椭圆方程,结合椭圆离心率的取值范围,即可求得椭圆的离心率.【题目详解】由题意知A,把A代入椭圆(a>b>0),得,∴,整理,得,∴,∵0<e<1,∴,故选D.【题目点拨】本题考查了椭圆与圆的标准方程及其性质、等边三角形的性质,考查了推理能力与计算能力,属于中档题.5、B【解题分析】试题分析:由题意可知,,,即,,解得.故B正确.考点:1二项式系数;2组合数的运算.6、A【解题分析】试题分析:分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,,,长方体上底面截圆锥的截面半径为,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当,时,等号成立,此时利用率为,故选A.考点:1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.7、D【解题分析】由题意,选一本语文书一本数学书有9×7=63种,选一本数学书一本英语书有5×7=35种,选一本语文书一本英语书有9×5=45种,∴共有63+45+35=143种选法.故选D.8、D【解题分析】

由题意首先求得的值,然后确定的大小即可.【题目详解】由可得:,则,据此可得.本题选择D选项.【题目点拨】本题主要考查余弦定理及其应用,意在考查学生的转化能力和计算求解能力.9、C【解题分析】

对函数求导,将问题转化为恒成立,构造函数,将问题转化为来求解,即可求出实数的取值范围.【题目详解】,,令,则.,其中,且函数单调递增.①当时,对任意的,,此时函数在上单调递增,则,合乎题意;②当时,令,得,.当时,;当时,.此时,函数在处取得最小值,则,不合乎题意.综上所述,实数的取值范围是.故选:C.【题目点拨】本题考查利用函数的在区间上的单调性求参数的取值范围,解题时根据函数的单调性转化为导数的符号来处理,然后利用参变量分离法或分类讨论思想转化函数的最值求解,属于常考题,属于中等题。10、A【解题分析】

由题构建图像,由,想到取PC中点构建平面ABD,易证得平面ABD,所以PA与平面所成角即为,利用正弦函数定义,得答案.【题目详解】如图所示,取PC中点为D连接AD,BD,因为过AB的平面将三棱锥P-ABC分为体积相等的两部分,所以即为平面ABD;又因为,所以,又,所以,且,所以平面ABD,所以PA与平面所成角即为,因为,所以,所以.故选:A【题目点拨】本题考查立体几何中求线面角,应优先作图,找到或证明到线面垂直,即可表示线面角,属于较难题.11、C【解题分析】

根据抛物线的标准方程可得出抛物线的焦点坐标.【题目详解】由题意可知,抛物线的焦点坐标为,故选:C.【题目点拨】本题考查抛物线焦点坐标的求解,考查计算能力,属于基础题.12、A【解题分析】

根据复数除法运算得到,根据复数模长定义可求得结果.【题目详解】,.故选:.【题目点拨】本题考查复数模长的求解,涉及到复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

由,可得,,结合已知等式将代数式将代数式展开,可求出的值.【题目详解】当时,得,,所以,所以,,故答案为:.【题目点拨】本题考查恒等式的应用,解题时要充分利用题中的等式,结合分类讨论求解,考查分析问题和解决问题的能力,属于中等题.14、【解题分析】

先用同角三角函数平方和关系求出,再利用商关系求出,最后利用二倍角的正切公式求出的值.【题目详解】因为,,所以,.【题目点拨】本题考查了同角三角函数的平方和关系和商关系,考查了二倍角的正切公式.15、-3【解题分析】

先判断函数的奇偶性,再由题得,化简即得m的值.【题目详解】因为,所以函数为偶函数,因为函数只有一个零点,故,所以.故答案为:-3.【题目点拨】本题主要考查函数奇偶性的判断和函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解题分析】

先由及概率和为1,解得,再利用方差公式计算.【题目详解】解:因为,又,

所以,.

故答案为:.【题目点拨】本题考查离散型随机变量的数学方差的求法,是基础题,解题时要认真审题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ);(Ⅲ)详见解析.【解题分析】

(Ⅰ)根据频率之和为1即可求出a的值,由历史成绩在内的有名学生即可求出的值;(Ⅱ)根据分层抽样具有按比例的性质得出良好的有2人,优秀有3人,通过列举法求解概率;(Ⅲ)补充列联表,算出,对比表格得出结论【题目详解】(Ⅰ)由题可得,解得,又历史成绩在内的有名学生,所以,解得.(Ⅱ)由题可得,这名学生中历史成绩良好的有名,所以抽取的名学生中历史成绩良好的有名,历史成绩优秀的有名,记历史成绩优秀的名学生为,,,历史成绩良好的名学生为,,从这名学生中随机抽取名,有,,,,,,,,,,共10种情况,其中这名学生的历史成绩均优秀的有,,,共种情况,所以这名学生的历史成绩均优秀的概率为.(Ⅲ)补充完整的列联表如下表所示:男生女生合计优秀204060良好202040合计4060100则的观测值,所以没有的把握认为历史成绩是否优秀与性别有关.【题目点拨】本题属于常规概率统计问题,属于每年必考题型,主要涉及知识点有:频率分布直方图:频率分布直方图中每个小矩形的面积为相应区间的频率,所以小正方形的面积之和为1;分层抽样:按比例;系统抽样:等距离;列联表:会列列联表,即判断两者是否有关联.18、(1);(2)-20.【解题分析】分析:(1)根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程求得m的值;(2)利用二项展开式的通项公式即可.详解:(1)由题意知:,又(2)含的项:所以展开式中的系数为点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.19、(1)猜想13+23+33+…+n3=(1+2+3+…+n)2;证明见解析(2)2【解题分析】

(1)根据式子猜想出一般性结论,然后当时,证明成立,假设时,式子也成立,然后对时的式子进行化简,从而证明结论成立;(2)对进行分组求和,然后根据(1)中所得到的求和公式,进行求和计算,得到答案.【题目详解】(1)猜想13+23+33+…+n3=(1+2+3+…+n)2;证明:当n=1时,左边=1,右边=1,等式成立;假设n=k时,13+23+33+…+k3=(1+2+3+…+k)2,当n=k+1时,13+23+33+…+k3+(k+1)3=(1+2+3+…+k)2+(k+1)3,可得n=k+1时,猜想也成立,综上可得对任意的正整数n,13+23+33+…+n3=(1+2+3+…+n)2;(2)数列{an}的前n项和为Sn,且an=n3+n,S1=(13+23+…+13)+(1+2+3+…+1)=(1+2+…+1)2=552+55=2.【题目点拨】本题考查数学归纳法的证明,数列分组求和,属于中档题.20、(1)有;(2).【解题分析】分析:(1)根据已知数据完成2×2列联表,计算,判断有的把握认为“对足球有兴趣与性别有关”.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论