2024届广东省名校三校数学高二第二学期期末考试模拟试题含解析_第1页
2024届广东省名校三校数学高二第二学期期末考试模拟试题含解析_第2页
2024届广东省名校三校数学高二第二学期期末考试模拟试题含解析_第3页
2024届广东省名校三校数学高二第二学期期末考试模拟试题含解析_第4页
2024届广东省名校三校数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省名校三校数学高二第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z满足(1+i)z=2i,则|z|=()A. B.C. D.22.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C. D.3.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.甲、乙、丙三位同学站成一排照相,则甲、丙相邻的概率为()A. B. C. D.5.已知椭圆的两个焦点为,且,弦过点,则的周长为()A. B. C. D.6.已知点为双曲线的对称中心,过点的两条直线与的夹角为,直线与双曲线相交于点,直线与双曲线相交于点,若使成立的直线与有且只有一对,则双曲线离心率的取值范围是()A. B. C. D.7.正项等比数列中,,若,则的最小值等于()A.1 B. C. D.8.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里 B.48里 C.36里 D.24里9.四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为()A. B. C. D.10.在一组样本数据不全相等的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为()A.3 B.0 C. D.111.已知函数,则函数的定义域为()A. B. C. D.12.某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的有理项共有__________项.14.若(x-ax2)615.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.16.已知点在圆上,点在椭圆上,,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?18.(12分)某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.19.(12分)已知函数.(1)求的单调区间;(2)设为函数的两个零点,求证:.20.(12分)为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:时间星期一星期二星期三星期四星期五星期六星期日车流量(万辆)1234567的浓度(微克/立方米)28303541495662(1)求关于的线性回归方程;(提示数据:)(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中,.21.(12分)已知正项数列满足,数列的前项和满足.(1)求数列,的通项公式;(2)求数列的前项和.22.(10分)甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、3、4的4个黑球,从甲、乙两盒中各抽取一个小球.(1)求抽到红球和黑球的标号都是偶数的概率;(2)现从甲乙两盒各随机抽取1个小球,记其标号的差的绝对值为,求的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先求出的表达式,然后对其化简,求出复数的模即可.【题目详解】由题意,,所以.故选:C.【题目点拨】本题考查复数的四则运算,考查复数的模的计算,属于基础题.2、B【解题分析】

解析:考察均值不等式,整理得即,又,3、D【解题分析】因为把的图象向右平移个单位长度可得到函数的图象,所以,为了得到函数的图象,可以将函数的图象,向右平移个单位长度故选D.4、C【解题分析】分析:通过枚举法写出三个人站成一排的所有情况,再找出其中甲、丙相邻的情况,由此能求出甲、丙相邻的概率.详解:三人站成一排,所有站法有:(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种,其中甲、丙相邻有4种,所以,甲、丙相邻的概率为.故选C.点睛:本题考查古典概型的概率的求法,解题时要注意枚举法的合理运用.5、D【解题分析】

求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【题目详解】由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故选D.【题目点拨】本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.6、A【解题分析】

根据双曲线渐近线以及夹角关系列不等式,解得结果【题目详解】不妨设双曲线方程为,则渐近线方程为因为使成立的直线与有且只有一对,所以从而离心率,选A.【题目点拨】本题考查求双曲线离心率取值范围,考查综合分析求解能力,属较难题.7、D【解题分析】分析:先求公比,再得m,n关系式,最后根据基本不等式求最值.详解:因为,所以,因为,所以,因此当且仅当时取等号选点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8、C【解题分析】

每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【题目详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【题目点拨】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.9、A【解题分析】

通过分析每人有4种借阅可能,即可得到答案.【题目详解】对于甲来说,有4种借阅可能,同理每人都有4种借阅可能,根据乘法原理,故共有种可能,答案为A.【题目点拨】本题主要考查乘法分步原理,难度不大.10、D【解题分析】

根据回归直线方程可得相关系数.【题目详解】根据回归直线方程是可得这两个变量是正相关,故这组样本数据的样本相关系数为正值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=1.故选:D.【题目点拨】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.11、B【解题分析】

根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【题目详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【题目点拨】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.12、C【解题分析】分析:先写出的取值,再分别求的概率,最后求的数学期望.详解:由题得所以故答案为:C点睛:(1)本题主要考查离散型随机变量的分布列和数学期望,意在考查学生对这些基础知识的掌握能力.(2)离散型随机变量的数学期望二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】,,因为有理项,所以,共三项。填3.14、4【解题分析】试题分析:(x-ax2考点:二项式定理.15、.【解题分析】

先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【题目详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.若选出的2名学生恰有1名女生,有种情况,若选出的2名学生都是女生,有种情况,所以所求的概率为.【题目点拨】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.16、【解题分析】分析:根据题意,详解:根据题意,当三点共线时.点睛:本题考查椭圆的定义,看出最小值IDE求法,属难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)216(2)36(3)120【解题分析】分析:(1)分两种情况讨论甲在最左端时,有,当甲不在最左端时,有(种)排法,由分类计数加法原理可得结果;(2)分三步:将看成一个整体,将于剩余的2件产品全排列,有3个空位可选,根据分步计数乘法原理可得结果;(3)用表示歌舞类节目,小品类节目,相声类节目,利用枚举法可得共有种,每一种排法种的三个,两个可以交换位置,故总的排法为种.详解:(1)当甲在最左端时,有;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有(种)排法,共计(种)排法.(2)根据题意,分3步进行分析:产品与产品相邻,将看成一个整体,考虑之间的顺序,有种情况,将于剩余的2件产品全排列,有种情况,产品与产品不相邻,有3个空位可选,即有3种情况,共有种;(3)法一:用表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种:每一种排法种的三个,两个可以交换位置,故总的排法为种.法二:分两步进行:(1)先将3个歌曲进行全排,其排法有种;(2)将小品与相声插入将歌曲分开,若两歌舞之间只有一个其他节目,其插法有种.若两歌舞之间有两个其他节目时插法有种.所以由计数原理可得节目的排法共有(种).点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.18、(1)X

0

1

2

3

1

P

(2)【解题分析】

试题分析:(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,1.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的1人中至少有3名男生,表示男生有3个人,或者男生有1人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,1..∴所以X的分布列为:(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=1)=+=.点评:本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.19、(1)的单调递减区间为,单调递增区间为.(2)见证明,【解题分析】

(1)利用导数求函数单调区间的一般步骤即可求出;(2)将零点问题转化成两函数以及图像的交点问题,通过构造函数,依据函数的单调性证明即可。【题目详解】解:(1)∵,∴.当时,,即的单调递减区间为,无增区间;当时,,由,得,当时,;当时,,∴时,的单调递减区间为,单调递增区间为.(2)证明:由(1)知,的单调递减区间为,单调递增区间为,不妨设,由条件知即构造函数,则,由,可得.而,∴.知在区间上单调递减,在区间单调递增,可知,欲证,即证.考虑到在上递增,只需证,由知,只需证.令,则.所以为增函数.又,结合知,即成立,所以成立.【题目点拨】本题考查了导数在函数中的应用,求函数的单调区间,以及函数零点的常用解法,涉及到分类讨论和转化与化归等基本数学思想,意在考查学生的逻辑推理、数学建模和运算能力。20、(1);(2)(ⅰ)91微克/立方米;(ⅱ)13万辆.【解题分析】

(1)由数据可得:,,结合回归方程计算系数可得关于的线性回归方程为.(2)(I)结合(1)中的回归方程可预测车流量为12万辆时,的浓度为91微克/立方米.(II)由题意得到关于x的不等式,求解不等式可得要使该市某日空气质量为优或为良,则应控制当天车流量在13万辆以内.【题目详解】(1)由数据可得:,,,,,故关于的线性回归方程为.(2)(I)当车流量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论