版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市铁人中学2024届数学高二下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B. C. D.2.设,则()A. B.C. D.3.若复数满足,其中为虚数单位,则A. B. C. D.4.已知函数与分别是定义在上的奇函数和偶函数,且,则的值为()A. B. C. D.5.已知函数,,若关于的方程有6个不相等的实数解,则实数的取值范围是()A. B. C. D.6.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A.2 B.4 C. D.7.水以恒速(即单位时间内注入水的体积相同)注入下面的容器中,则此容器里水的高度与时间的函数关系图象是()A. B. C. D.8.若点P在抛物线上,点Q(0,3),则|PQ|的最小值是()A. B. C. D.9.已知为坐标原点,双曲线上有两点满足,且点到直线的距离为,则双曲线的离心率为()A. B. C. D.10.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是()A. B.C. D.12.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过()x0123y1357A.(1.5,4)点 B.(1.5,0)点 C.(1,2)点 D.(2,2)点二、填空题:本题共4小题,每小题5分,共20分。13.若实数x,y满足,则的取值范围是__________;14.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.15.已知函数在上是减函数,则实数的取值范围是______.16.某地区气象台统计,该地区下雨的概率是,刮风的概率是,既刮风又下雨的概率为,设为下雨,为刮风,那么等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.18.(12分)已知正四棱锥中,底面是边长为2的正方形,高为,为线段的中点,为线段的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.(12分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.20.(12分)已知椭圆C:的左、右顶点分别为A,B其离心率,点M为椭圆上的一个动点,面积的最大值是求椭圆C的方程;若过椭圆C右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当时,求点P的坐标.21.(12分)在中,内角的对边分别为.已知(1)求的值(2)若,求的面积.22.(10分)若函数(1)若,求曲线在点处的切线方程;(2)若在上只有一个极值,且该极值小于,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先根据诱导公式得,再利用二倍角公式以及弦化切得结果.详解:因为,所以,因此,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2、C【解题分析】分析:由题意将替换为,然后和比较即可.详解:由题意将替换为,据此可得:.本题选择C选项.点睛:本题主要考查数学归纳法中由k到k+1的计算方法,意在考查学生的转化能力和计算求解能力.3、B【解题分析】
由复数的除法运算法则化简,由此可得到复数【题目详解】由题可得;;故答案选B【题目点拨】本题主要考查复数的除法运算法则,属于基础题。4、C【解题分析】
根据条件可得,与联立便可解出和,从而得到的值。【题目详解】①;;又函数与分别是定义在上的奇函数和偶函数;,;②;联立①②,解得所以;故答案选C【题目点拨】本题考查奇函数、偶函数的定义,解题的关键是通过建立关于与的方程组求出和的解析式,属于中档题。5、A【解题分析】令g(x)=t,则方程f(t)=λ的解有3个,由图象可得,0<λ<1.且三个解分别为,则,,均有两个不相等的实根,则△1>0,且△2>0,且△3>0,即16−4(2+5λ)>0且16−4(2+3λ)>0,解得,当0<λ<时,△3=16−4(1+4λ−)>0即3−4λ+>0恒成立,故λ的取值范围为(0,).故选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识.6、D【解题分析】
由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【题目详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【题目点拨】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.7、C【解题分析】分析:根据容器的特征,结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断.结合函数图像分析判别可得结论.详解:A、B选项中:函数图象是单调递增的,与与题干不符,故排除;C、当注水开始时,函数图象往下凸,可得出下方圆台容器下粗上细,符合题意.;D、当注水时间从0到t时,函数图象往上凸,可得出下方圆台容器下细上粗,与题干不符,故排除.故选C.点睛:本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h和时间t之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想.8、B【解题分析】试题分析:如图所示,设,其中,则,故选B.考点:抛物线.9、A【解题分析】
讨论直线的斜率是否存在:当斜率不存在时,易得直线的方程,根据及点O到直线距离即可求得的关系,进而求得离心率;当斜率存在时,设出直线方程,联立双曲线方程,结合及点到直线距离即可求得离心率。【题目详解】(1)当直线的斜率不存在时,由点到直线的距离为可知直线的方程为所以线段因为,根据等腰直角三角形及双曲线对称性可知,即双曲线中满足所以,化简可得同时除以得,解得因为,所以(2)当直线的斜率存在时,可设直线方程为,联立方程可得化简可得设则,因为点到直线的距离为则,化简可得又因为所以化简得即所以,双曲线中满足代入化简可得求得,即因为,所以综上所述,双曲线的离心率为所以选A【题目点拨】本题考查了双曲线性质的应用,直线与双曲线的位置关系,注意讨论斜率是否存在的情况,计算量较大,属于难题。10、A【解题分析】
由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【题目详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【题目点拨】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.11、B【解题分析】
先求出每次抽到奇数的概率,再利用n次独立重复试验中恰好发生k的概率计算公式求出结果.【题目详解】每次抽到奇数的概率都相等,为,故恰好有2次抽到奇数的概率是••,故选:B.【题目点拨】本题主要考查n次独立重复试验中恰好发生k的概率计算公式的应用,属于基础题.12、A【解题分析】由题意:,回归方程过样本中心点,即回归方程过点.本题选择A选项.二、填空题:本题共4小题,每小题5分,共20分。13、;【解题分析】
令,,可将化为,根据三角函数值域可求得结果.【题目详解】可令,本题正确结果:【题目点拨】本题考查利用三角换元的方式求解取值范围的问题,关键是能够将问题转化为三角函数的值域的求解.14、【解题分析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.15、【解题分析】
在上是减函数的等价条件是在恒成立,然后分离参数求最值即可.【题目详解】在上是减函数,在恒成立,即,在的最小值为,【题目点拨】本题主要考查利用导函数研究含参函数的单调性问题,把在上是减函数转化为在恒成立是解决本题的关键.16、【解题分析】由题意可知,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】分析:(1)通过取AD中点M,连接CM,利用,得到直角;再利用可得;而,DE平面ADEF,所以可得面面垂直.(2)以AD中点O建立空间直角坐标系,写出各点坐标,求得平面CAE与直线BE向量,根据直线与法向量的夹角即可求得直线与平面夹角的正弦值.详解:(1)证明:取的中点,连接,,,由四边形为平行四边形,可知,在中,有,∴.又,,∴平面,∵平面,∴.又,,∴平面.∵平面,∴平面平面.(2)解:由(1)知平面平面,如图,取的中点为,建立空间直角坐标系,,,,,,,.设平面的法向量,则,即,不妨令,得.故直线与平面所成角的正弦值.点睛:本题考查了空间几何体面面垂直的综合应用,利用法向量法求线面夹角的正弦值,关键注意计算要准确,属于中档题.18、(1)见证明;(2)【解题分析】
(1)要证明平面,利用中位线可先证明即可;(2)找出直线与平面所成角为,利用正弦定理即可得到所成角的正弦值.【题目详解】解:(1)证明:在四棱锥中,连结交于点,连结,因为在中,为的中点,为的中点,所以为的中位线,得,又因为平面,平面,所以平面.(2)设,由题意得,因为为的中点,所以,,故平面.所以直线在平面内的射影为直线,为直线与平面所成的角,又因为,所以.由条件可得,,,,所以.在中,,,所以所以,故直线与平面所成角的正弦值为.【题目点拨】本题主要考查线面平行的判定,线面所成角的相关计算,意在考查学生的转化能力,分析能力及计算能力,难度中等.19、(1)在上单调递增,在上单调递减;(2)5.【解题分析】分析:(1)对函数求导,分类讨论即可;(2)∵对恒成立,∴,解得或,则正整数的最小值为.即只需要证明当时,对恒成立即可.详解:(1),当时,在上单调递增.当或时,,在单调递减.当且时,令,得;令,得.∴在上单调递增,在上单调递减.(2)∵对恒成立.∴,解得或,则正整数的最小值为.下面证明当时,对恒成立,过程如下:当时,令,得;令,得.故,从而对恒成立.故整数的最小值为.点睛:不等式的证明问题,可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想.20、(1)(2)当时,,当时,【解题分析】
(1)由题意可知解方程即可得解;(2)设直线的方程为,,由直线与椭圆联立得,由根与系数的关系可得,从而得中点的坐标,进而得的垂直平分线方程,令x=0可得,再由,用坐标表示即可解.【题目详解】(1)由题意可知解得,,所以椭圆方程为.(2)由(1)知,设直线的方程为,,把代入椭圆方程,整理得,所以,则,所以中点的坐标为,则直线的垂直平分线方程为,得又,即,化简得,解得故当时,,当时,.【题目点拨】本题主要考查了直线与椭圆的位置关系,用到了向量问题坐标化,坐标通过设而不求的方程灵活处理,考查了学生的运算能力,属于中档题.21、(1)(2)【解题分析】
(1)正弦定理得边化角整理可得,化简即得答案.(2)由(1)知,结合题意由余弦定理可解得,,从而计算出面积.【题目详解】(1)由正弦定理得,所以即即有,即所以(2)由(1)知,即,又因为,所以由余弦定理得:,即,解得,所以,又因为,所以,故的面积为=.【题目点拨】正弦定理与余弦定理是高考的重要考点,本题主要考查由正余弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年-江苏省安全员A证考试题库
- 2025年四川省建筑安全员《B证》考试题库及答案
- 机械设计教学课件-样章
- 《眼保健操》课件
- 《急诊影像病例》课件
- 汤姆索亚历险记教学课件
- 【课件】体育产业发展的概述与日照市体育产业发展的现状及建议
- 《IPTV播控平台综述》课件
- 单位人力资源管理制度佳作合集十篇
- 单位人力资源管理制度合并合集十篇
- 小学语文作业设计及设计意图
- 《百分数的认识》 (教学设计)2024-2025学年六年级上册数学人教版
- 体育场拱架施工吊装和拆撑卸载验算方案
- 翻译技术实践智慧树知到期末考试答案章节答案2024年山东师范大学
- GJB9001C:2017风险管理计划
- HG/T 6312-2024 化工园区竞争力评价导则(正式版)
- 2024时事政治试题库学生专用
- RFJ 006-2021 RFP型人防过滤吸收器制造与验收规范(暂行)
- 电子行业认证行业深度研究报告
- 2022年10月自考00318公共政策试题及答案含解析
- 人力资源管理程序(含流程图)
评论
0/150
提交评论