版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市怀宁二中2024届数学高二第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若有最小值,则实数的取值范围是()A. B. C. D.2.执行如图所示的程序框图,则程序输出的结果为()A. B. C. D.3.下列四个命题中,真命题的个数是()①命题“若,则”;②命题“且为真,则有且只有一个为真命题”;③命题“所有幂函数的图象经过点”;④命题“已知是的充分不必要条件”.A.1 B.2 C.3 D.44.周末,某高校一学生宿舍甲乙丙丁四位同学正在做四件事情,看书、写信、听音乐、玩游戏,下面是关于他们各自所做事情的一些判断:①甲不在看书,也不在写信;②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在看书;④丙不在看书,也不写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是()A.玩游戏B.写信C.听音乐D.看书5.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.6.函数的单调递增区间为()A. B.C. D.7.在二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;在三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=4A.4πr4 B.3πr48.已知复数为虚数单位,是的共轭复数,则()A. B. C. D.9.已知,则()A. B. C. D.或10.集合,,若,则的值为().A. B. C. D.11.设、、,,,,则、、三数()A.都小于 B.至少有一个不大于C.都大于 D.至少有一个不小于12.已知两个正态分布密度函数的图象如图所示,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足不等式组且的最大值为,则=_____.14.已知函数为偶函数,对任意满足,当时,.若函数至少有个零点,则实数的取值范围是____________.15.已知不等式对任意恒成立,其中,是与无关的实数,则的最小值是________.16.某校为了解高二年级学生对教师教学的意见,打算从高二年级500名学生中用系统抽样的方法抽取50名进行调查,记500名学生的编号依次为1,2,…,500,若抽取的前两个号码为6,16,则抽取的最大号码为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.18.(12分)如图,弧是半径为r的半圆,为直径,点E为弧的中点,点B和点C为线段的三等分点,线段与弧交于点G,平面外一点F满足平面,.(1)求异面直线与所成角的大小;(2)将(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积.19.(12分)已知命题:函数在上是减函数,命题,.(1)若为假命题,求实数的取值范围;(2)若“或”为假命题,求实数的取值范围.20.(12分)设数列的前项和为.已知,.(1)若,证明:数列是等差数列;(2)求数列的前项和.21.(12分)已知椭圆的离心率为,顺次连接椭圆的四个顶点,所得到的四边形面积为.(1)求椭圆的方程;(2)设不垂直于坐标轴的直线与相交于两个不同的点,且直线的斜率成等比数列,求线段的中点的轨迹方程.22.(10分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的时间/分钟总人数203644504010将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(Ⅰ)请根据上述表格中的统计数据填写下面的列联表;课外体育不达标课外体育达标合计男女20110合计(Ⅱ)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式,其中.0.250.150.100.050.0250.0100.0050.0011.3232.0722.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
对函数求导得出,由题意得出函数在上存在极小值点,然后对参数分类讨论,在时,函数单调递增,无最小值;在时,根据函数的单调性得出,从而求出实数的取值范围.【题目详解】,,构造函数,其中,则.①当时,对任意的,,则函数在上单调递减,此时,,则对任意的,.此时,函数在区间上单调递增,无最小值;②当时,解方程,得.当时,,当时,,此时,.(i)当时,即当时,则对任意的,,此时,函数在区间上单调递增,无最小值;(ii)当时,即当时,,当时,,由零点存在定理可知,存在和,使得,即,且当和时,,此时,;当时,,此时,.所以,函数在处取得极大值,在取得极小值,由题意可知,,,可得,又,可得,构造函数,其中,则,此时,函数在区间上单调递增,当时,则,.因此,实数的取值范围是,故选:C.2、C【解题分析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列.因此当时,.故程序输出的结果为.选C.3、C【解题分析】
①令,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数的图象判断.④由,判断充分性,取特殊值判断必要性.【题目详解】①令,,所以在上递增所以,所以,故正确.②若且为真,则都为真命题,故错误.③因为所有幂函数的图象经过点,故正确.④因为,所以,故充分性成立,当时,推不出,所以不必要,故正确.故选:C【题目点拨】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.4、D【解题分析】由①知甲在听音乐或玩游戏,由②知乙在看书或玩游戏,由④知丙在听音乐或玩游戏,由③知,丁在看书,则甲在听音乐,丙在玩游戏,乙在看书,故选D.5、A【解题分析】
利用等差数列的知识可求的值,然后利用的公式可求.【题目详解】由等差数列{an}的性质可知,所以,所以.故选:A.【题目点拨】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.6、B【解题分析】
先求出的定义域,再利用同增异减以及二次函数的图像判断单调区间即可.【题目详解】令,得f(x)的定义域为,根据复合函数的单调性规律,即求函数在上的减区间,根据二次函数的图象可知为函数的减区间.故选:B【题目点拨】本题主要考查对数函数的定义域以及复合函数的单调区间等,属于基础题型.7、B【解题分析】
根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到W'【题目详解】由题知,S'=l,V'=S所以W=3πr4,故选【题目点拨】本题主要考查学生的归纳和类比推理能力。8、C【解题分析】,选C.9、B【解题分析】分析:根据角的范围利用同角三角函数的基本关系求出cos(α)的值,再根据sinα=sin[(α)+],利用两角差的正弦公式计算求得结果.详解:∵,,∴∈(,π),∴cos()=﹣,或(舍)∴sinα=sin[()+]=sin()cos+cos()sin=-=,故选B.点睛:本题主要考查两角和差的正弦公式,同角三角函数的基本关系,解题关键根据角的取值范围对cos()的值进行取舍,属于中档题.10、D【解题分析】因为,所以,选D.11、D【解题分析】
利用基本不等式计算出,于此可得出结论.【题目详解】由基本不等式得,当且仅当时,等号成立,因此,若、、三数都小于,则与矛盾,即、、三数至少有一个不小于,故选D.【题目点拨】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.12、A【解题分析】
正态曲线关于对称,且越大图象越靠近右边,第一个曲线的均值比第二个图象的均值小,又有越小图象越瘦高,得到正确的结果.【题目详解】正态曲线是关于对称,且在处取得峰值,由图易得,故的图象更“瘦高”,的图象更“矮胖”,则.故选A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.14、【解题分析】
根据偶函数性质及解析式满足的条件,可知的对称轴和周期,并由时的解析式,画出函数图像;根据导数的几何意义,求得时的解析式,即可求得的临界值,进而确定的取值范围.【题目详解】函数至少有个零点,由可得函数为偶函数,对任意满足,则函数图像关于对称,函数为周期的周期函数,当时,,则的函数图像如下图所示:由图像可知,根据函数关于轴对称可知,若在时至少有两个零点,则满足至少有个零点,即在时至少有两个交点;当与相切时,满足有两个交点;则,设切点为,则,解方程可得,由导数的几何意义可知,所以满足条件的的取值范围为.故答案为:.【题目点拨】本题考查了函数零点的应用,方程与函数的综合应用,根据导数求函数的交点情况,数形结合法求参数的取值范围,属于难题.15、1【解题分析】
设,其中,求出的取值范围,即可得出的最小值.【题目详解】设,其中;;,,,,即;令,,则的最小值是.故答案为:1.【题目点拨】本题考查不等式恒成立应用问题,可转化为求函数的最值,结合单调性是解题的关键.16、496【解题分析】
通过系统抽样的特征,即可计算出最大编号.【题目详解】由于间距为,而前两个号码为6,16,则编号构成是以6为首项,10为公差的等差数列,因此最大编号为,故答案为496.【题目点拨】本题主要考查系统抽样的相关计算,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;证明见解析【解题分析】
根据三角形两边之差小于第三边这个性质,按题设数据,所有一边是2的三角形其余两边只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,从而题设四面体中,以棱长为2的棱为公共边的两个面的其余两边只可能是下列三种情形:(I)(A)与(B),(II)(A)与(C);(III)(B)与(C),于是问题转化为对棱长分别为(I)(II)(III)的四面体来计算体积的最大值(或估计).【题目详解】由三角形两边之差小于第三边这个性质,按题设数据,所有一边是2的三角形其余两边只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,从而题设四面体中,以棱长为2为公共边的两个面的其余两边只可能是下列三种情形:(I)(A)与(B),(II)(A)与(C);(III)(B)与(C).对情形(I)(A)与(B),四边形沿AB折叠后使,则由得,即是四面体以为底面的高,∴体积为;对情形(II)(A)与(C)四边形沿AB折叠后使,有两种情形,它们体积相等,记为,∵,∴为钝角,与平面斜交,∴;对情形(III),(B)与(C),这样的四面体也有两个,体积也相等,记为,.∴最大体积为.【题目点拨】本题考查四面体的体积,解题关键是找到以棱长为2的棱为突破点,分析以它为边的两个三角形的边长可能有哪些情形,然后一一求出它们的体积(可估计体积大小),再比较.难度较大.18、(1);(2);【解题分析】
(1)由平面,利用线面垂直的性质定理可得,即可得到异面直线与所成角的大小为.(2)连接,在中,利用余弦定理得:,由题设知,所得几何体为圆锥,分别计算其其底面积及高为,即可得到该圆锥的体积.【题目详解】解:(1)平面,平面,,异面直线与所成角的大小为.(2)连接,在中,由余弦定理得:,由题设知,所得几何体为圆锥,其底面积为,高为.该圆锥的体积为.【题目点拨】熟练掌握线面垂直的性质定理、余弦定理、圆锥的体积计算公式是解题的关键.19、(1).(2).【解题分析】分析:第一问利用命题的否定和命题本身是一真一假的,根据命题q是假命题,得到命题的否定是真命题,结合二次函数图像,得到相应的参数的取值范围;第二问利用“或”为假命题,则有两个命题都是假命题,所以先求命题p为真命题时参数的范围,之后求其补集,得到m的范围,之后将两个命题都假时参数的范围取交集,求得结果.详解:(1)因为命题,所以:,,当为假命题时,等价于为真命题,即在上恒成立,故,解得所以为假命题时,实数的取值范围为.(2)函数的对称轴方程为,当函数在上是减函数时,则有即为真时,实数的取值范围为“或”为假命题,故与同时为假,则,综上可知,当“或”为假命题时,实数的取值范围为点睛:该题考查的是有关利用命题的真假判断来求有关参数的取值范围,在解题的过程中,需要明确复合命题的真值表,以及二次函数的图像和性质要非常熟悉.20、(1)见解析;(2)【解题分析】
(1)由题意可得,再由等差数列的定义即可得证;(2)求得,即,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年圆柱柱头项目投资价值分析报告
- 2025至2031年中国引进辅助开关行业投资前景及策略咨询研究报告
- 媒体广告投放代理合作协议书
- 二零二五年度房地产项目绿色建筑光环境优化委托管理合同3篇
- 可穿戴设备研发制造合作协议
- 2024年物业委托经营管理合同范本:特色服务篇9篇
- 环保行业废弃物处理合规协议
- 人工智能技术服务免责条款协议
- 三农领域创新实践指南
- 2025年度租赁合同:教育培训设备租赁与学习资源分享2篇
- 数学课怎样分层教学案例
- 学校餐厅供货者评价和退出机制
- 2023医院招聘护士考试真题库及参考答案
- 湖北省襄樊市襄阳古城旅游区总体重点规划
- 消火栓月检查表
- 项目财务核算业务蓝图
- 8.台球助教速成培训手册0.9万字
- 无缝钢管焊接作业指导书(1)
- 零缺陷与质量成本
- 网吧企业章程范本
- 安徽省书法家协会会员登记表
评论
0/150
提交评论