




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省清连中学2024届数学高二第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,是的共轭复数,若,则的虚部为()A. B. C. D.2.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A.身高在左右 B.身高一定是C.身高在以上 D.身高在以下3.函数为偶函数,且在单调递增,则的解集为A. B.或C. D.或4.已知集合,,则()A. B. C. D.5.若复数,则()A. B. C. D.6.已知展开式中项的系数为,其中,则此二项式展开式中各项系数之和是()A. B.或 C. D.或7.已知集合,或,则()A. B.C. D.8.已知复数(是虚数单位),则复数的共轭复数()A. B. C. D.9.如图,棱长为1的正方体中,P为线段上的动点(不含端点),则下列结论错误的是A.平面平面B.的取值范围是(0,]C.的体积为定值D.10.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●个数是()A.10 B.9 C.8 D.1111.已知,为的导函数,则的图象是()A. B.C. D.12.函数是()A.偶函数且最小正周期为2 B.奇函数且最小正周期为2C.偶函数且最小正周期为 D.奇函数且最小正周期为二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为______。14.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.15.在正项等比数列中,,,则公比________.16.行列式的第2行第3列元素的代数余子式的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.18.(12分)已知定点及直线,动点到直线的距离为,若.(1)求动点的轨迹C方程;(2)设是上位于轴上方的两点,坐标为,且,的延长线与轴交于点,求直线的方程.19.(12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数b的取值范围.20.(12分)已知不等式的解集为.(1)求集合;(2)设实数,证明:.21.(12分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有1个,分别编号为1,2,3,1.现从袋中随机取两个球.(Ⅰ)若两个球颜色不同,求不同取法的种数;(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.22.(10分)已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)的零点个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由题意可得:,则,据此可得,的虚部为.本题选择A选项.2、A【解题分析】
由线性回归方程的意义得解.【题目详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【题目点拨】本题考查线性回归方程的意义,属于基础题.3、D【解题分析】
根据函数的奇偶性得到,在单调递增,得,再由二次函数的性质得到,【题目详解】函数为偶函数,则,故,因为在单调递增,所以.根据二次函数的性质可知,不等式,或者,的解集为,故选D.【题目点拨】此题考查了函数的对称性和单调性的应用,对于抽象函数,且要求解不等式的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为自变量的大小比较,直接比较括号内的自变量的大小即可.4、C【解题分析】
先求出集合M,由此能求出M∩N.【题目详解】则故选:C【题目点拨】本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.5、C【解题分析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可得:.本题选择C选项.点睛:本题主要考查复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.6、B【解题分析】
利用二项式定理展开通项,由项的系数为求出实数,然后代入可得出该二项式展开式各项系数之和.【题目详解】的展开式通项为,令,得,该二项式展开式中项的系数为,得.当时,二项式为,其展开式各项系数和为;当时,二项式为,其展开式各项系数和为.故选B.【题目点拨】本题考查二项式定理展开式的应用,同时也考查了二项式各项系数和的概念,解题的关键就是利用二项式定理求出参数的值,并利用赋值法求出二项式各项系数之和,考查运算求解能力,属于中等题.7、C【解题分析】
首先解绝对值不等式,从而利用“并”运算即可得到答案.【题目详解】根据题意得,等价于,解得,于是,故答案为C.【题目点拨】本题主要考查集合与不等式的综合运算,难度不大.8、B【解题分析】分析:利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.详解:,.故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9、B【解题分析】
根据线面位置关系进行判断.【题目详解】∵平面,∴平面平面,A正确;若是上靠近的一个四等分点,可证此时为钝角,B错;由于,则平面,因此的底面是确定的,高也是定值,其体积为定值,C正确;在平面上的射影是直线,而,因此,D正确.故选B.【题目点拨】本题考查空间线面间的位置关系,考查面面垂直、线面平行的判定,考查三垂线定理等,所用知识较多,属于中档题.10、B【解题分析】将圆分组:第一组:○●,有个圆;第二组:○○●,有个圆;第三组:○○○●,有个,…,每组圆的总个数构成了一个等差数列,前组圆的总个数为,令,解得,即包含整组,故含有●的个数是个,故选B.【方法点睛】本题考查等差数列的求和公式及归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.11、A【解题分析】
先求得函数的导函数,再对导函数求导,然后利用特殊点对选项进行排除,由此得出正确选项.【题目详解】依题意,令,则.由于,故排除C选项.由于,故在处导数大于零,故排除B,D选项.故本小题选A.【题目点拨】本小题主要考查导数的运算,考查函数图像的识别,属于基础题.12、C【解题分析】
首先化简为,再求函数的性质.【题目详解】,是偶函数,故选C.【题目点拨】本题考查了三角函数的基本性质,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、240【解题分析】
根据二项式展开式通项公式确定常数项对应项数,再代入得结果【题目详解】,令得,,所以的展开式中的常数项为.【题目点拨】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.14、【解题分析】
设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【题目详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【题目点拨】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15、【解题分析】
利用等比中项可求出,再由可求出公比.【题目详解】因为,,所以,,解得.【题目点拨】本题考查了等比数列的性质,考查了计算能力,属于基础题.16、-11【解题分析】
根据代数余子式列式,再求行列式得结果【题目详解】故答案为:-11【题目点拨】本题考查代数余子式,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在,理由见解析【解题分析】
(1)写出,根据,斜率乘积为-1,建立等量关系求解离心率;(2)写出直线AB的方程,根据韦达定理求出点B的坐标,计算出弦长,根据垂直关系同理可得,利用等式即可得解.【题目详解】(1)由题可得,过点作直线交椭圆于点,且,直线交轴于点.点为椭圆的右顶点时,的坐标为,即,,化简得:,即,解得或(舍去),所以;(2)椭圆的方程为,由(1)可得,联立得:,设B的横坐标,根据韦达定理,即,,所以,同理可得若存在使得成立,则,化简得:,,此方程无解,所以不存在使得成立.【题目点拨】此题考查求椭圆离心率,根据直线与椭圆的位置关系解决弦长问题,关键在于熟练掌握解析几何常用方法,尤其是韦达定理在解决解析几何问题中的应用.18、(1)(2)【解题分析】
(1)直接把条件用坐标表示,并化简即可;(2)设,由可得的关系,的关系,再结合在曲线上,可解得,从而能求得的方程.【题目详解】(1)设,则由,知又,∴由题意知:∴∴∴点的轨迹方程为(2)设,∵∴为中点,∵∴∴又,∴又,∴∵,∴,∴∴直线方程为【题目点拨】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.19、(1);(2).【解题分析】
(Ⅰ)函数,对其进行求导,在处取得极值,可得,求得值;
(Ⅱ)由知,得令则关于的方程在区间上恰有两个不同的实数根,转化为上恰有两个不同实数根,对对进行求导,从而求出的范围;【题目详解】(Ⅰ)时,取得极值,故解得.经检验符合题意.(Ⅱ)由知,得令则在上恰有两个不同的实数根,等价于上恰有两个不同实数根.当时,,于是上单调递增;当时,,于是在上单调递增;依题意有.【题目点拨】本题考查利用导数研究函数的极值及单调性以及方程的实数根问题,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,属中档题.20、(1);(2)证明见解析.【解题分析】
(1)对分、、三种情况讨论,去绝对值,分别解出不等式,可得出不等式的解集;(2)证法一:由题意得出,,将不等式两边作差得出,由此可得出所证不等式成立;证法二:利用分析法得出所证不等式等价于,由题意得出,,判断出的符号,可得出所证不等式成立.【题目详解】(1)当时,不等式化为:,解得;当时,不等式化为:,解得;当时,不等式化为:,解得.综上可知,;(2)证法一:因为,,所以,.而,所以;证法二:要证,只需证:,只需证:,因为,,所以,.所以成立,所以成立.【题目点拨】本题考查利用分类讨论法解绝对值不等式,以及利用分析法和比较法证明不等式,证明时可结合不等式的结构合理选择证明方法,考查分类讨论思想和逻辑推理能力,属于中等题.21、(1)96(2)见解析【解题分析】
(1)两个球颜色不同的情况共有12=96(种).(2)随机变量X所有可能的值为0,1,2,2.P(X=0)==,P(X=1)=,P(X=2)=,P(X=2)=所以随机变量X的概率分布列为:X0122P所以E(X)=0+1+2+2=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.22、(1);(2)个零点.【解题分析】
解:(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R},∴f(x)=a(x+1)(x﹣3)=a[(x﹣1)2﹣4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医相关课件
- 中医妇科护理课件
- 大学生职业规划大赛《书法专业》生涯发展展示
- 自媒体账号内容合作合同(版)
- 生猪养殖合作协议
- 专科电子信息工程课件
- 项目合同协议书模板
- 二手房屋带车库交易合同样本
- 软装一体化装修合同模板
- 西藏日喀则市南木林一中学2025届普通中考第二次适应性检测试题数学试题含解析
- 质量整改通知单(样板)
- 二子女无财产无债务离婚协议书
- 装配作业指导书
- 换填承载力计算(自动版)
- 公司董事会会议台账
- 2021-2022学年福建省厦门市第一中学高二下学期期中生物试题(原卷版)
- 煤矿安管人员七新题库及答案
- (完整word版)中小学教育质量综合评价指标框架(试行)
- HIV-1病毒载量测定及质量保证指南
- 电路原理图设计评审检查要素表
- 工控机测试标准
评论
0/150
提交评论