山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第1页
山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第2页
山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第3页
山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第4页
山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市齐河县一中2024届高二数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为虚数单位,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.幂函数的图象过点,那么的值为()A. B.64 C. D.4.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增5.一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于,则n的值共有()A.1个 B.2个 C.3个 D.4个6.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,,则f(x)()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值7.若某几何体的三视图如图所示,则这个几何体的表面积是()A. B. C.19 D.8.如图所示是的图象的一段,它的一个解析式是()A. B.C. D.9.已知全集U={x∈Z|0<x<10},集合A={1,2,3,4},B={x|x=2a,a∈A},则(∁UA)∩B=()A.{6,8} B.{2,4} C.{2,6,8} D.{4,8}10.执行如图所示的程序框图,则输出的k的值为()A.4 B.5 C.6 D.711.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)12.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知.经计算,,,,则根据以上式子得到第个式子为______.14.已知,,则的值为_______________.15.设函数的导数为,且,则.16.已知曲线与轴只有一个交点,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数关系式:的部分图象如图所示:(1)求,,的值;(2)设函数,求在上的单调递减区间.18.(12分)已知函数f(x)=|x+a|+|x-2|的定义域为实数集R.(1)当a=5时,解关于x的不等式f(x)>9;(2)设关于x的不等式f(x)≤|x-4|的解集为A,若B={x∈R||2x-1|≤3},当A∪B=A时,求实数a的取值范围.19.(12分)已知函数.(1)当时,求的解集;(2)若恒成立,求实数的取值范围.20.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小.(2)若,,求b.21.(12分)求证:22.(10分)已知复数.(1)求实数的值;(2)若,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据复数的除法运算法则,即可求出结果.【题目详解】.故选D【题目点拨】本题主要考查复数的除法运算,熟记运算法则即可,属于基础题型.2、C【解题分析】

利用对数函数的单调性对集合化简得x|0<x<1},然后求出A∩B即可.【题目详解】={x|0<x<2},∴A∩B={1},故选:C【题目点拨】考查对数不等式的解法,以及集合的交集及其运算.3、A【解题分析】

设幂函数的解析式为∵幂函数的图象过点.选A4、D【解题分析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.5、C【解题分析】

设每次取到红球的概率为p,结合独立事件的概率的计算公式,求得,再由,即可判定,得到答案.【题目详解】由题意,设每次取到红球的概率为p,可得,即,解得,因为,所以,所以或6或7.故选:C.【题目点拨】本题主要考查了独立事件的概率的计算公式及其应用,其中解答中正确理解题意,合理利用独立事件的概率的计算公式,求得相应的概率的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解题分析】因为xf′(x)-f(x)=xlnx,所以,所以,所以f(x)=xln2x+cx.因为f()=ln2+c×=,所以c=,所以f′(x)=ln2x+lnx+=(lnx+1)2≥0,所以f(x)在(0,+∞)上单调递增,所以f(x)在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如构造,构造,构造,构造等7、B【解题分析】

判断几何体的形状几何体是正方体与一个四棱柱的组合体,利用三视图的数据求解几何体的表面积即可.【题目详解】由题意可知几何体是正方体与一个四棱柱的组合体,如图:几何体的表面积为:.故选B.【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.8、D【解题分析】

根据图象的最高点和最低点求出A,根据周期T求ω,图象过(),代入求,即可求函数f(x)的解析式;【题目详解】由图象的最高点,最低点,可得A,周期Tπ,∴.图象过(),∴,可得:,则解析式为ysin(2)故选D.【题目点拨】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.9、A【解题分析】

先化简已知条件,再求.【题目详解】由题得,因为,,故答案为A【题目点拨】本题主要考查集合的化简,考查集合的补集和交集运算,意在考查学生对这些知识的掌握水平.10、A【解题分析】试题分析:模拟运算:k=0,S=0,S<100成立S=0+2S=1+2S=3+2S=7+2S=15+2S=15+2S=31+2S=63+26=127,k=6+1=7,S=127<100考点:程序框图.11、B【解题分析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.12、B【解题分析】

先求得二项式的展开式的各项系数之和为.然后利用列举法求得在一共个数字中任选两个,和为的概率,由此得出正确选项.【题目详解】令代入得,即二项式的展开式的各项系数之和为.从0,1,2,3,4,5中任取两个不同的数字方法有:共种,其中和为的有共两种,所以恰好使该图形为“和谐图形”的概率为,故选B.【题目点拨】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案.【题目详解】观察已知中等式:,,,,…,则,故答案为:.【题目点拨】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于中档题.14、【解题分析】

由三角函数的基本关系式和正弦的倍角公式,求得,再由两角差的余弦函数的公式,即可求解.【题目详解】由,即,则,又由,所以,又由.【题目点拨】本题主要考查了三角函数的基本关系式,以及正弦的倍角公式和两角差的余弦公式的化简、求值,着重考查了推理与运算能力,属于基础题.15、【解题分析】试题分析:,而,所以,,故填:.考点:导数16、5【解题分析】

由曲线y=x2+4x+m﹣1与x轴只有一个交点△=0可求m的值.【题目详解】因为与x轴只有一个交点,故,所以.故答案为5【题目点拨】本题考查由△判定二次函数与x轴交点个数问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)根据函数图像最高点可确定A值,根据已知水平距离可计算周期,从而得出,然后代入图像上的点到原函数可求得即可;(2)先根据(1)得出g(x)表达式,然后根据正弦函数图像求出单调递减区间,再结合所给范围确定单调递减区间即可.详解:(1)由图形易得,,解得,此时.因为的图象过,所以,得.因为,所以,所以,得.综上,,.(2)由(1)得.由,解得,其中.取,得,所以在上的单调递减区间为.点睛:考查三角函数的图像和基本性质,对三角函数各个变量的作用和求法的熟悉是解题关键,属于基础题.18、(1){x∈R|x<-6或x>3}.(2)[-1,0].【解题分析】分析:(1)当a=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求;(2)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的取值范围.详解:(1)当a=5时,f(x)=|x+5|+|x-2|.①当x≥2时,由f(x)>9,得2x+3>9,解得x>3;②当-5≤x<2时,由f(x)>9,得7>9,此时不等式无解;③当x<-5时,由f(x)>9,得-2x-3>9,解得x<-6.综上所述,当a=5时,关于x的不等式f(x)>9的解集为{x∈R|x<-6或x>3}.(2)∵A∪B=A,∴B⊆A.又B={x||2x-1|≤3}={x∈R|-1≤x≤2},关于x的不等式f(x)≤|x-4|的解集为A,∴当-1≤x≤2时,f(x)≤|x-4|恒成立.由f(x)≤|x-4|得|x+a|≤2.∴当-1≤x≤2时,|x+a|≤2恒成立,即-2-x≤a≤2-x恒成立.∴实数a的取值范围为[-1,0].点睛:本题主要考查绝对值不等式的解法,集合间的包含关系.19、(1);(2).【解题分析】

(1)将代入函数的解析式,并将函数表示为分段函数,分段解出不等式,可得出所求不等式的解集;(2)分和两种情况,将函数的解析式表示为分段函数,求出函数的最小值,然后解出不等式可得出实数的取值范围.【题目详解】(1)当时,,当时,由,得;当时,由,得;当时,不等式无解.所以原不等式的解集为;(2)当时,;当时,.所以,由,得或,所以实数的取值范围是.【题目点拨】本题考查绝对值不等式的解法以及绝不等式不等式恒成立问题,一般采用去绝对值的办法,利用分类讨论思想求解,考查分类讨论思想的应用,属于中等题.20、(1)(2)【解题分析】

(1)根据正弦定理可解得角B;(2)由余弦定理,将已知代入,可得b.【题目详解】解:(1)由,得,又因B为锐角,解得.(2)由题得,解得.【题目点拨】本题考查正,余弦定理解三角形,属于基础题.21、证明见解析.【解题分析】试题分析:此题证明可用分析法,寻找结论成立的条件,由于不等式两边均为正,因此只要证,化简后再一次平方可寻找到没有根号,易知显然成立的式子,从而得证.试题解析:证明:因为都是正数,所以为了证明只需证明展开得即因为成立,所以成立即证明了【题目点拨】(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论