吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题含解析_第1页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题含解析_第2页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题含解析_第3页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题含解析_第4页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届高二数学第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.利用反证法证明:若,则,应假设()A.,不都为 B.,都不为C.,不都为,且 D.,至少一个为2.已知,均为正实数,且,则的最小值为()A.20 B.24 C.28 D.323.如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为A.2 B.4 C.6 D.84.由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A.6个 B.8个 C.10个 D.12个5.若是小于的正整数,则等于()A. B. C. D.6.已知圆柱的轴截面的周长为,则圆柱体积的最大值为()A. B. C. D.7.已知是定义在上的函数,且对于任意,不等式恒成立,则整数的最小值为()A.1 B.2 C.3 D.48.在正方体中,与平面所成角的正弦值为()A. B. C. D.9.当输入a的值为,b的值为时,执行如图所示的程序框图,则输出的的结果是()A. B. C. D.10.命题“”的否定是()A. B.C. D.11.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A为4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(B|A)=()A.14 B.34 C.212.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89二、填空题:本题共4小题,每小题5分,共20分。13.命题,命题,则“或”是__________命题.(填“真”、“假”)14.已知函数恰有两个零点,则实数的值为___________15.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)456789销量(件)908483807568由表中数据,求得线性回归方程为,则实数______.16.设圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离为d,则d的最大值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知椭圆经过点,且其左右焦点的坐标分别是,.(1)求椭圆的离心率及标准方程;(2)设为动点,其中,直线经过点且与椭圆相交于,两点,若为的中点,是否存在定点,使恒成立?若存在,求点的坐标;若不存在,说明理由18.(12分)在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).(1)求曲线的直角坐标方程与曲线的普通方程;(2)将曲线经过伸缩变换后得到曲线,若,分别是曲线和曲线上的动点,求的最小值.19.(12分)已知命题:函数在上单调递增;命题:关于的方程有解.若为真命题,为假命题,求实数的取值范围.20.(12分)已知平面内点到点的距离和到直线的距离之比为,若动点P的轨迹为曲线C.(I)求曲线C的方程;(II)过F的直线与C交于A,B两点,点M的坐标为设O为坐标原点.证明:.21.(12分)甲、乙两位同学学生参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下:甲:7876749082乙:9070758580(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由.22.(10分)最新研究发现,花太多时间玩手机游戏的儿童,患多动症的风险会加倍.青少年的大脑会很快习惯闪烁的屏幕、变幻莫测的手机游戏,一旦如此,他们在教室等视觉刺激较少的地方,就很难集中注意力.研究人员对110名年龄在7岁到8岁的儿童随机调查,并在孩子父母的帮助下记录了他们在1个月里玩手机游戏的习惯.同时,教师记下这些孩子出现的注意力不集中问题.统计得到下列数据:注意力不集中注意力集中总计不玩手机游戏204060玩手机游戏302050总计5060110(1)试估计7岁到8岁不玩手机游戏的儿童中注意力集中的概率;(2)能否在犯错误的概率不超过0.010的前提下认为玩手机游戏与注意力集中有关系?附表:0.100.050.0250.0100.0050.0012.7063.8405.0246.6357.87910.828.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

表示“都是0”,其否定是“不都是0”.【题目详解】反证法是先假设结论不成立,结论表示“都是0”,结论的否定为:“不都是0”.【题目点拨】在简易逻辑中,“都是”的否定为“不都是”;“全是”的否定为“不全是”,而不能把它们的否定误认为是“都不是”、“全不是”.2、A【解题分析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.3、B【解题分析】

由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半.【题目详解】由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半,即为2×2×2=1.故选B.【题目点拨】本题考查由三视图求体积,考查学生的计算能力,确定几何体的形状是关键.4、B【解题分析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数.最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:.

其中数字0,2相邻的四位数有:则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.5、D【解题分析】

利用排列数的定义可得出正确选项.【题目详解】,由排列数的定义可得.故选:D.【题目点拨】本题考查排列数的表示,解题的关键就是依据排列数的定义将代数式表示为阶乘的形式,考查分析问题和解决问题的能力,属于中等题.6、B【解题分析】

分析:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,利用基本不等式,可求圆柱体积的最大值.详解:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,∴2r+h=r+r+h≥3,∴r2h≤∴V=πr2h≤8π,∴圆柱体积的最大值为8π,点睛:(1)本题主要考查圆柱的体积和基本不等式,意在考查学生对这些知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.7、A【解题分析】

利用的单调性和奇偶性,将抽象不等式转化为具体不等式,然后将恒成立问题转化成最值问题,借助导数知识,即可解决问题.【题目详解】,可知,且单调递增,可以变为,即,∴,可知,设,则,当时,,当时,单调递增;当时,单调递减,可知,∴,∵,∴整数的最小值为1.故选A.【题目点拨】本题主要考查了函数的性质、抽象不等式的解法、以及恒成立问题的一般解法,意在考查学生综合运用所学知识的的能力.8、B【解题分析】

证明与平面所成角为,再利用边的关系得到正弦值.【题目详解】如图所示:连接与交于点,连接,过点作与平面所成角等于与平面所成角正方体平面平面与平面所成角为设正方体边长为1在中故答案选B【题目点拨】本题考查了线面夹角,判断与平面所成角为是解得的关键,意在考查学生的计算能力和空间想象能力.9、C【解题分析】

模拟程序的运行,根据程序流程,依次判断写出a,b的值,可得当a=b=4时,不满足条件a≠b,输出a的值为4,即可得解.【题目详解】模拟程序的运行,可得a=16,b=12满足条件a≠b,满足条件a>b,a=16−12=4,满足条件a≠b,不满足条件a>b,b=12−4=8,满足条件a≠b,不满足条件a>b,b=4−4=4,不满足条件a≠b,输出a的值为4.故选:C.【题目点拨】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10、B【解题分析】

根据“全称命题”的否定一定是“特称命题”判断.【题目详解】“全称命题”的否定一定是“特称命题”,命题“”的否定是,故选:B.【题目点拨】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.11、A【解题分析】

确定事件AB,利用古典概型的概率公式计算出PAB和PA,再利用条件概型的概率公式可计算出P【题目详解】事件AB为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则PAB=A334【题目点拨】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题。12、B【解题分析】试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,故选B.考点:1.程序框图的应用.二、填空题:本题共4小题,每小题5分,共20分。13、真【解题分析】分析:先判断p,q真假,再判断“或”真假.详解:因为,所以p为假命题,因为,所以q为真命题,因此“或”是真命题,点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.14、【解题分析】

令,得,转化为直线与函数的图象有两个交点,于此可得出实数的值。【题目详解】令,得,构造函数,其中,问题转化为:当直线与函数的图象有两个交点,求实数的值。,令,得,列表如下:极小值作出图象如下图所示:结合图象可知,,因此,,故答案为:。【题目点拨】本题考查函数的零点个数问题,由函数零点个数求参数的取值范围,求解方法有如下两种:(1)分类讨论法:利用导数研究函数的单调性与极值,借助图象列出有关参数的不等式组求解即可;(2)参变量分离法:令原函数为零,得,将问题转化为直线与函数的图象,一般要利用导数研究函数的单调性与极值,利用图象求解。15、106【解题分析】

求出样本中心坐标,代入回归方程即可求出值.【题目详解】解:,,将代入回归方程得,解得.故答案为:.【题目点拨】本题考查回归方程问题,属于基础题.16、3【解题分析】

将问题转化为求圆心到直线的距离加上半径,再由点到直线的距离公式可得结果.【题目详解】依题意可知,圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离的最大值等于圆心到直线的距离加上半径,因为圆心到直线为,圆的半径为1,所以的最大值为.故答案为:.【题目点拨】本题考查了点到直线的距离公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)在定点【解题分析】

(1)根据椭圆的焦点得到,根据椭圆过点,由椭圆的定义得到,再求出,从而得到椭圆的离心率和标准方程;(2)设,,则,,利用点差法,得到,从而表示出线段的垂直平分线,再根据直线过定点,得到关于的方程组,得到定点的坐标.【题目详解】(1)设椭圆方程:.∴.∵椭圆经过点,∴,∴,可得.椭圆的离心率为,椭圆标准方程:.(2)设,,因为为中点,则,.∵、在曲线上,∴,将以上两式相减得:.所以得到,∴线段的垂直平分线方程:,整理得令,得故线段的垂直平分线过定点.所以存在定点,使恒成立.【题目点拨】本题考查根据椭圆定义求椭圆标准方程和离心率,直线与椭圆的位置关系,点差法表示线段垂直平分线,椭圆中直线过的定点,属于中档题.18、(1)(2)【解题分析】

(1)∵的极坐标方程是,∴,整理得,∴的直角坐标方程为.曲线:,∴,故的普通方程为.(2)将曲线经过伸缩变换后得到曲线的方程为,则曲线的参数方程为(为参数).设,则点到曲线的距离为.当时,有最小值,所以的最小值为.19、.【解题分析】试题分析:命题p:函数在上单调递增,利用一次函数的单调性可得或;命题q:关于x的方程有实根,可得,解得;若“p或q”为真,“p且q”为假,可得p与q必然一真一假.分类讨论解出即可.试题解析:由已知得,在上单调递增.若为真命题,则,,或;若为真命题,,,.为真命题,为假命题,、一真一假,当真假时,或,即;当假真时,,即.故.点睛:本题考查了一次函数的单调性、一元二次方程由实数根与判别式的关系、复合命题的判定方法,考查了推理能力,属于基础题.20、(I)(II)见解析【解题分析】

(I)根据题目点到点的距离和到直线的距离之比为,列出相应的等式方程,化简可得轨迹C的方程;(II)对直线分轴、l与x轴重合以及l存在斜率且斜率不为零三种情况进行分析,当l存在斜率且斜率不为零时,利用点斜式设直线方程,与曲线C的方程进行联立,结合韦达定理,可推得,从而推出.【题目详解】解:(I)∵到点的距离和到直线的距离之比为.∴,.化简得:.故所求曲线C的方程为:.(II)分三种情况讨论:1、当轴时,由椭圆对称性易知:.2、当l与x轴重合时,由直线与椭圆位置关系知:3、设l为:,,且,,由化简得:,∴,设MA,MB,所在直线斜率分别为:,,则此时,.综上所述:.【题目点拨】本题主要考查了利用定义法求轨迹方程以及直线与圆锥曲线的综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论