版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省临夏市临夏中学2024届数学高二下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则的最小值为()A. B. C. D.2.设,则()A. B. C. D.3.已知D,E是边BC的三等分点,点P在线段DE上,若,则xy的取值范围是A. B. C. D.4.直线的斜率为()A. B. C. D.5.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,476.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A.625 B.310 C.37.已知点P(x,y)的坐标满足条件那么点P到直线3x-4y-13=0的距离的最小值为()A.2 B.1 C. D.8.定义方程的实数根叫做函数的“新驻点”,如果函数的“新驻点”分别为那么的大小关系是()A. B. C. D.9.曲线在点处的切线方程是()A. B.C. D.10.同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为()A.48 B.56 C.60 D.12011.已知(ax)5的展开式中含x项的系数为﹣80,则(ax﹣y)5的展开式中各项系数的绝对值之和为()A.32 B.64 C.81 D.24312.已知复数,则()A.4 B.6 C.8 D.10二、填空题:本题共4小题,每小题5分,共20分。13.若向量,,,,且,则与的夹角等于________14.已知为椭圆的左、右焦点,若椭圆C上恰有6个不同的点P,使得为直角三角形,则椭圆的离心率为__________.15.已知,则展开式中的系数为__________.16.颜色不同的个小球全部放入个不同的盒子中,若使每个盒子不空,则不同的方法有__________.(用数值回答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为自然对数的底数.(1)求曲线在处的切线方程;(2)求函数的单调区间与极值.18.(12分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.19.(12分)已知函数(1)计算;(2)若在上单调递减,求实数的范围20.(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.21.(12分)现有9名学生,其中女生4名,男生5名.(1)从中选2名代表,必须有女生的不同选法有多少种?(2)从中选出男、女各2名的不同选法有多少种?(3)从中选4人分别担任四个不同岗位的志愿者,每个岗位一人,且男生中的甲与女生中的乙至少有1人在内,有多少种安排方法?22.(10分)设函数的导函数为.若不等式对任意实数x恒成立,则称函数是“超导函数”.(1)请举一个“超导函数”的例子,并加以证明;(2)若函数与都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数是“超导函数”;(3)若函数是“超导函数”且方程无实根,(e为自然对数的底数),判断方程的实数根的个数并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
首先可换元,,通过再利用基本不等式即可得到答案.【题目详解】由题意,可令,,则,,于是,而,,故的最小值为,故答案为D.【题目点拨】本题主要考查基本不等式的综合应用,意在考查学生的转化能力,计算能力,难度中等.2、A【解题分析】
利用中间值、比较大小,即先利用确定三个数的正负,再将正数与比较大小,可得出三个数的大小关系.【题目详解】由于函数在定义域上是减函数,则,且,,由于函数在定义域上是减函数,则,函数在定义域上是增函数,则,因此,,故选A.【题目点拨】本题考查指对数混合比大小,常用方法就是利用指数函数与对数函数的单调性,结合中间值法来建立桥梁来比较各数的大小关系,属于常考题,考查分析问题的能力,属于中等题.3、D【解题分析】
利用已知条件推出x+y=1,然后利用x,y的范围,利用基本不等式求解xy的最值.【题目详解】解:D,E是边BC的三等分点,点P在线段DE上,若,可得,x,,则,当且仅当时取等号,并且,函数的开口向下,对称轴为:,当或时,取最小值,xy的最小值为:.则xy的取值范围是:故选D.【题目点拨】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.4、A【解题分析】
将直线方程化为斜截式,可得出直线的斜率.【题目详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选A.【题目点拨】本题考查直线斜率的计算,计算直线斜率有如下几种方法:(1)若直线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.5、D【解题分析】此题考查系统抽样系统抽样的间隔为:k=50答案D点评:掌握系统抽样的过程6、D【解题分析】
因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率.【题目详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为12故答案选D【题目点拨】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题.7、A【解题分析】
由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点到直线的最小值,即可求解.【题目详解】由约束条件作出可行域,如图所示,由图可知,当与重合时,点到直线的距离最小为.故选:A.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.8、D【解题分析】
由已知得到:,对于函数h(x)=lnx,由于h′(x)=
令,可知r(1)<0,r(2)>0,故1<β<2
,且,选D.9、D【解题分析】
求出原函数的导函数,得到f′(0)=﹣2,再求出f(0),由直线方程的点斜式得答案.【题目详解】f′(x)=,∴f′(0)=﹣2,又f(0)=﹣1∴函数图象在点(0,f(0))处的切线方程是y+1=﹣2(x﹣0),即故选:D【题目点拨】本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点的切线的斜率,就是函数在该点处的导数值,是中档题.10、A【解题分析】
采用捆绑法,然后全排列【题目详解】宿舍长必须和班主任相邻则有种可能,然后运用捆绑法,将其看成一个整体,然后全排列,故一共有种不同的排法故选【题目点拨】本题考查了排列中的位置问题,运用捆绑法来解答即可,较为基础11、D【解题分析】
由题意利用二项展开式的通项公式求出的值,可得即
,本题即求的展开式中各项系数的和,令,可得的展开式中各项系数的和.【题目详解】的展开式的通项公式为令,求得,可得展开式中含项的系数为,解得,则所以其展开式中各项系数的绝对值之和,即为的展开式中各项系数的和,令,可得的展开式中各项系数的和为.故选D项.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题12、D【解题分析】
根据复数的模长公式进行计算即可.【题目详解】z=8+6i,则8﹣6i,则||10,故选:D.【题目点拨】本题主要考查复数的模长的计算,根据条件求出是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由平面向量数量积的运算的:,即与的夹角等于【题目详解】由,,所以,,,所以,即与的夹角等于,故答案为:【题目点拨】本题考查向量数量积的坐标运算、向量的夹角公式、向量模的求法,属于基础题。14、【解题分析】
由题意,问题等价于椭圆上存在两点使直线与直线垂直,可得,从而得到椭圆的离心率。【题目详解】一方面,以为直角顶点的三角形共有4个;另一方面,以椭圆的短轴端点为直角顶点的三角形有两个,此时,则椭圆的离心率为.【题目点拨】本题考查椭圆的几何性质,考查学生的分析转化能力,解题的关键是把问题转化为椭圆上存在两点使直线与直线垂直,属于中档题。15、448.【解题分析】由题意可得:,则展开式的通项公式为:,令可得:,则的系数为:.16、1【解题分析】分析:利用挡板法把4个小球分成3组,然后再把这3组小球全排列,再根据分步计数原理求得所有的不同放法的种数.详解:在4个小球之间插入2个挡板,即可把4个小球分成3组,方法有种.
然后再把这3组小球全排列,方法有种.
再根据分步计数原理可得所有的不同方法共有种,
故答案为1.点睛:本题主要考查排列、组合以及简单计数原理的应用,利用挡板法把4个小球分成3组,是解题的关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)的单调递减区间为,单调递增区间为;极小值为,无极大值.【解题分析】
首先求得;(1)将代入求得且点坐标,根据导数的几何意义可求得切线斜率,利用点斜式可得切线方程;(2)令导函数等于零,求得,从而可得导函数在不同区间内的符号,进而得到单调区间;根据极值的定义可求得极值.【题目详解】由得:(1)在处切线斜率:,又所求切线方程为:,即:(2)令,解得:当时,;当时,的单调递减区间为:;单调递增区间为:的极小值为:;无极大值【题目点拨】本题考查利用导数求解曲线在某一点处的切线方程、求解导数的单调区间和极值的问题,考查学生对于导数基础应用的掌握.18、(1)见解析;(2)直线与平面所成角的余弦值为.【解题分析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向量数量积求得向量夹角,最后根据线面角与向量夹角互余关系得结果.详解:(Ⅰ)因为,平面,平面,所以平面.同理可得,平面.又,所以平面平面.(Ⅱ)(向量法)以为坐标原点,所在的直线分别为轴,轴,轴建立如下图所示的空间直角坐标系,由已知得,点,,,.所以,.易证平面,则平面的一个法向量为.设直线与平面所成角为,则。则.即直线与平面所成角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19、(1)(2)【解题分析】
(1)直接求导得到答案.(2)在上恒成立,即恒成立,得到答案.【题目详解】(1),则;(2)在上恒成立,故在上恒成立,故.【题目点拨】本题考查了求导数,根据函数的单调性求参数,意在考查学生的计算能力.20、(1);(2)【解题分析】
(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【题目详解】(1)当时,,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【题目点拨】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题21、(1)26;(2)60;(3)2184【解题分析】
(1)采用间接法;(2)采用直接法;(3)先用间接法求出从中选4人,男生中的甲与女生中的乙至少有1人在内的选法种数,再分配到四个不同岗位即可.【题目详解】(1)从中选2名代表,没有女生的选法有种,所以从中选2名代表,必须有女生的不同选法有种.(2)从中选出男、女各2名的不同选法有种.(3)男生中的甲与女生中的乙至少有1人被选的不同选法有种,将这4人安排到四个不同的岗位共有种方法,故共有种安排方法.【题目点拨】本题考查排列与组合的综合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工安全事件索赔施工合同
- 媒体清水池防水施工协议
- 艺人形象设计合同
- 太阳能发电施工员聘用协议
- 旅游景区景观道路照明施工协议
- 钻孔计量施工协议
- 互联网数据中心灰土工程协议
- 图书馆临时咖啡机租赁合同
- 网球场自动门施工合同
- 交通设施维修灰工施工合同
- 2024年秋期国家开放大学《0-3岁婴幼儿的保育与教育》大作业及答案
- 2024年就业保障型定向委培合同3篇
- 2024预防流感课件完整版
- 2024沪粤版八年级上册物理期末复习全册知识点考点提纲
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 残联内部审计计划方案
- 2024-2030年中国漫画行业发展趋势与投资战略研究研究报告
- 傩戏面具制作课程设计
- 2024年大学生安全知识竞赛题库及答案(共190题)
- 吊装作业施工方案
- 智能工厂梯度培育行动实施方案
评论
0/150
提交评论