版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省广昌一中2024届高二数学第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是()A.17 B.18 C.12.将4名学生分配到5间宿舍中的任意2间住宿,每间宿舍2人,则不同的分配方法有()A.240种 B.120种 C.90种 D.60种3.用反证法证明:若整系数一元二次方程有有理数根,那么、、中至少有一个偶数时,下列假设正确的是()A.假设、、都是偶数B.假设、、都不是偶数C.假设、、至多有一个偶数D.假设、、至多有两个偶数4.甲、乙两位同学将高三6次物理测试成绩做成如图所示的茎叶图加以比较(成绩均为整数满分100分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于90分且不是满分,则甲同学的平均成绩超过乙同学的平均成绩的概率为()A. B. C. D.5.若为虚数单位,复数与的虚部相等,则实数的值是A. B.2 C.1 D.6.在复平面内,复数对应向量(为坐标原点),设,以射线为始边,为终边逆时针旋转的角为,则,法国数学家棣莫弗发现棣莫弗定理:,,则,由棣莫弗定理导出了复数乘方公式:,则()A. B. C. D.7.一台机器在一天内发生故障的概率为,若这台机器一周个工作日不发生故障,可获利万元;发生次故障获利为万元;发生次或次以上故障要亏损万元,这台机器一周个工作日内可能获利的数学期望是()万元.(已知,)A. B. C. D.8.下列命题①多面体的面数最少为4;②正多面体只有5种;③凸多面体是简单多面体;④一个几何体的表面,经过连续变形为球面的多面体就叫简单多面体.其中正确的个数为()A.1 B.2 C.3 D.49.某射手射击所得环数的分布列如下:78910已知的数学期望,则的值为()A. B. C. D.10.已知变量x,y之间的线性回归方程为,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是()x681012y6m32A.变量x,y之间呈现负相关关系B.可以预测,当x=20时,y=﹣3.7C.m=4D.该回归直线必过点(9,4)11.展开式中常数项为()A. B. C. D.12.是单调函数,对任意都有,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆(为参数)的焦距为________.14.已知随机变量服从正态分布,若,,则.15.己知关于的不等式对恒成立,则实数的取值范围是_______.16.在极坐标系中,过点并且与极轴垂直的直线方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..18.(12分)设函数.(1)解不等式;(2)若存在,使不等式成立,求实数的取值范围.19.(12分)已知的内角所对的边分别为,且.(1)若,角,求角的值;(2)若的面积,,求的值.20.(12分)电子商务公司对某市50000名网络购物者2017年度的消费情况进行统计,发现消费金额都在5000元到10000元之间,其频率分布直方图如下:(1)求图中的值,并求出消费金额不低于8000元的购物者共多少人;(2)若将频率视为概率,从购物者中随机抽取50人,记消费金额在7000元到9000元的人数为,求的数学期望和方差.21.(12分)已知等比数列的前项和,其中为常数.(1)求;(2)设,求数列的前项和.22.(10分)(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择,计算P(AB)和P(A),再利用条件概率公式得到答案.【题目详解】设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择P(AB)=P(B故答案选A【题目点拨】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.2、D【解题分析】
根据分步计数原理分两步:先安排宿舍,再分配学生,继而得到结果.【题目详解】根据题意可以分两步完成:第一步:选宿舍有10种;第二步:分配学生有6种;根据分步计数原理有:10×6=60种.故选D.【题目点拨】本题考查排列组合及计数原理的实际应用,考查了分析问题解决问题的能力,属于基础题.3、B【解题分析】
根据反证法的概念,可知假设应是所证命题的否定,即可求解,得到答案。【题目详解】根据反证法的概念,假设应是所证命题的否定,所以用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数”时,假设应为“假设都不是偶数”,故选B。【题目点拨】本题主要考查了反证法的概念及其应用,其中解答中熟记反证法的概念,准确作出所证命题的否定是解答的关键,着重考查了推理与运算能力,属于基础题。4、C【解题分析】
首先求得甲的平均数,然后结合题意确定污损的数字可能的取值,最后利用古典概型计算公式求解其概率值即可.【题目详解】由题意可得:,设被污损的数字为x,则:,满足题意时,,即:,即x可能的取值为,结合古典概型计算公式可得满足题意的概率值:.故选C.【题目点拨】本题主要考查茎叶图的识别与阅读,平均数的计算方法,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.5、D【解题分析】
先化简与,再根据它们虚部相等求出m的值.【题目详解】由题得,因为复数与的虚部相等,所以.故选D【题目点拨】本题主要考查复数的运算和复数相等的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.6、D【解题分析】
将复数化为的形式,再利用棣莫弗定理解得答案.【题目详解】【题目点拨】本题考查复数的计算,意在考查学生的阅读能力,解决问题的能力和计算能力.7、C【解题分析】
设获利为随机变量,可得出的可能取值有、、,列出随机变量的分布列,利用数学期望公式计算出随机变量的数学期望.【题目详解】设获利为随机变量,则随机变量的可能取值有、、,由题意可得,,则.所以,随机变量的分布列如下表所示:因此,随机变量的数学期望为,故选C.【题目点拨】本题考查随机变量数学期望的计算,解题的关键就是根据已知条件列出随机变量的分布列,考查运算求解能力,属于中等题.8、D【解题分析】
根据多面体的定义判断.【题目详解】正多面体只有正四、六、八、十二、二十,所以①②正确.表面经过连续变形为球面的多面体就叫简单多面体.棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.所以③④正确.故:①②③④都正确【题目点拨】根据多面体的定义判断.9、B【解题分析】
根据分布列的概率之和是,得到关于和之间的一个关系式,由变量的期望值,得到另一个关于和之间的一个关系式,联立方程,解得的值.【题目详解】由题意可知:,解得.故选:B.【题目点拨】本题考查期望和分布列的简单应用,通过创设情境激发学生学习数学的情感,培养其严谨治学的态度,在学生分析问题、解决问题的过程中培养其积极探索的精神,属于基础题.10、C【解题分析】
根据回归直线方程的性质,以及应用,对选项进行逐一分析,即可进行选择.【题目详解】对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,故负相关.对于B:当x=20时,代入可得y=﹣3.7对于C:根据表中数据:9.可得4.即,解得:m=5.对于D:由线性回归方程一定过(),即(9,4).故选:C.【题目点拨】本题考查线性回归直线方程的性质,以及回归直线方程的应用,属综合基础题.11、D【解题分析】
求出展开式的通项公式,然后进行化简,最后让的指数为零,最后求出常数项.【题目详解】解:,令得展开式中常数项为,故选D.【题目点拨】本题考查了求二项式展开式中常数项问题,运用二项式展开式的通项公式是解题的关键.12、A【解题分析】
令,根据对任意都有,对其求导,结合是单调函数,即可求得的解析式,从而可得答案.【题目详解】令,则,.∴∵是单调函数∴∴,即.∴故选A.【题目点拨】本题考查的知识点是函数的值,函数解析式的求法,其中解答的关键是求出抽象函数解析式,要注意对已知条件及未知条件的凑配思想的应用.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
根据题意,将椭圆的参数方程变形为普通方程,据此可得a、b的值,计算可得c的值,由椭圆的几何性质分析可得答案.【题目详解】解:根据题意,椭圆的参数方程为(θ为参数),则其标准方程为y1=1,其中a,b=1,则c1,则椭圆的焦距1c=1;故答案为:1.【题目点拨】本题考查椭圆的参数方程,椭圆简单的几何性质,关键是将椭圆的参数方程变形为普通方程.14、0.8【解题分析】分析:先根据正态分布曲线对称性求,再根据求结果.详解:因为正态分布曲线关于对称,所以,因此点睛:利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x轴之间的面积为1.15、【解题分析】
对和讨论,利用二次函数的性质列不等式求实数的取值范围.【题目详解】解:当时,对恒成立;当时,,解得,综合得:,故答案为:.【题目点拨】本题考查二次不等式恒成立的问题,要特别注意讨论二次项系数为零的情况,是基础题.16、【解题分析】
由题意画出图形,结合三角形中的边角关系得答案.【题目详解】如图,由图可知,过点(1,0)并且与极轴垂直的直线方程是ρcosθ=1.故答案为.【题目点拨】本题考查了简单曲线的极坐标方程,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)直接利用三角形加法和减法法则得到.(2)先求,再求MN的长.详解:(Ⅰ)(Ⅱ),,.:本题主要考查向量的运算法则和基底法,考查向量的模,意在考查学生对这些知识的掌握水平和分析转化能力.18、(1);(2).【解题分析】试题分析:(1)结合函数的解析式分类讨论可得不等式的解集为(2)原问题等价于,结合(1)中的结论可得时,,则实数的取值范围为试题解析:(1)由题得,,则有或或解得或或,综上所述,不等式的解集为(2)存在,使不等式成立等价于由(1)知,时,,∴时,,故,即∴实数的取值范围为19、(1)或.(2)【解题分析】
(1)根据正弦定理,求得,进而可求解角B的大小;(2)根据三角函数的基本关系式,求得,利用三角形的面积公式和余弦定理,即可求解。【题目详解】(1)根据正弦定理得,.,,或.(2),且,.,,.由正弦定理,得.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.其中在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.20、(1)人(2)【解题分析】
由频率分布直方图计算出频率,然后用样本估计总体计算出消费金额在到的概率,然后计算的数学期望和方差【题目详解】(1)消费金额不低于8000元的频率为,所以共人.(2)从购物者中任意抽取1人,消费金额在7000到9000的概率为,所以,∴∴.【题目点拨】本题结合频率分布直方图用样本估计总体,并计算相应值得数学期望和方差,只要运用公式即可得到结果,较为基础.21、(1)(2)【解题分析】
(1)利用求出当时的通项,根据为等比数列得到的值后可得.(2)利用分组求和法可求的前项和.【题目详解】(1)因为,当时,,当时,,所以,因为数列是等比数列,所以对也成立,所以,即.(2)由(1)可得,因为,所以,所以,即.【题目点拨】(1)数列的通项与前项和的关系是,我们常利用这个关系式实现与之间的相互转化.(2)数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.22、(1)216(2)36(3)120【解题分析】分析:(1)分两种情况讨论甲在最左端时,有,当甲不在最左端时,有(种)排法,由分类计数加法原理可得结果;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度餐饮企业外卖配送服务合同6篇
- 2025年度生物制药研发与生产合同模板3篇
- 二零二五年度智能化别墅建造及智能化系统采购合同3篇
- 《养老机构服务合同》示范文本
- 违法分包对揭阳汇金中心C项目影响评估合同(2025版)3篇
- 2025年网络平台肖像权授权使用合同3篇
- 二零二五年度虫草资源保护与可持续利用合同范本3篇
- 2024私人之间的房屋买卖合同样本
- 2024脚手架工程安全施工与技术服务协议版
- 2025年度智慧城市安全监控系统设备采购合同2篇
- 横格纸A4打印模板
- CT设备维保服务售后服务方案
- 重症血液净化血管通路的建立与应用中国专家共识(2023版)
- 儿科课件:急性细菌性脑膜炎
- 柜类家具结构设计课件
- 陶瓷瓷砖企业(陶瓷厂)全套安全生产操作规程
- 煤炭运输安全保障措施提升运输安全保障措施
- JTGT-3833-2018-公路工程机械台班费用定额
- 保安巡逻线路图
- (完整版)聚乙烯课件
- 建筑垃圾资源化综合利用项目可行性实施方案
评论
0/150
提交评论