版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市于都县二中2024届数学高二第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则的最大值为()A.1 B. C. D.2.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为A. B. C. D.3.已知…,依此规律,若,则的值分别是()A.48,7 B.61,7 C.63,8 D.65,84.已知函数的图象向左平移个单位长度,横坐标伸长为原来的2倍得函数的图象,则在下列区间上为单调递减的区间是()A. B. C. D.5.若对于任意的实数,有,则的值为()A. B. C. D.6.将函数y=sin2x+π6的图象向右平移π6个单位长度后,得到函数f(x)的图象,A.kπ-5π12C.kπ-π37.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3,下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2 C.3 D.48.在10个篮球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为A. B. C. D.9.已知扇形的圆心角为弧度,半径为,则扇形的面积是()A. B. C. D.10.已知向量满足,且与的夹角为,则()A. B. C. D.11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即先赢2局者为胜根据以往二人的比赛数据分析,甲在每局比赛中获胜的概率为,则本次比赛中甲获胜的概率为()A. B. C. D.12.设,函数的导函数是,若是偶函数,则曲线在原点处的切线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为.14.若表示的动点的轨迹是椭圆,则的取值范围是________.15.如图是一个算法流程图,若输入值,则输出值为2的概率为__________.16.观察下列算式:,,,,…,,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望E(X).18.(12分)某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.(1)①根据图中数据,求出月销售额在小组内的频率.②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.19.(12分)从甲地到乙地要经过个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.()设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和均值.()若有辆车独立地从甲地到乙地,求这辆车共遇到个红灯的概率.20.(12分)如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==1.(1)求证:AC⊥平面BEF;(1)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.21.(12分)已知曲线在处的切线方程为.(Ⅰ)求值.(Ⅱ)若函数有两个零点,求实数的取值范围.22.(10分)设函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,对任意恒成立,求整数的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
直接使用基本不等式,可以求出的最大值.【题目详解】因为,,,所以有,当且仅当时取等号,故本题选D.【题目点拨】本题考查了基本不等式的应用,掌握公式的特征是解题的关键.2、B【解题分析】
构造函数,则得的单调性,再根据为奇函数得,转化不等式为,最后根据单调性性质解不等式.【题目详解】构造函数,则,所以在上单独递减,因为为奇函数,所以.因此不等式等价于,即,选B.【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等3、C【解题分析】
仔细观察已知等式的数字可发现:,根据此规律解题即可.【题目详解】由,
,
,
归纳可得,故当时,,
故选C.【题目点拨】本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).4、A【解题分析】
先利用辅助角公式将函数化为的形式,再写出变换后的函数,最后写出其单调递减区间即可.【题目详解】的图象向左平移个单位长度,横坐标伸长为原来的2倍变换后,在区间上单调递减故选A【题目点拨】本题考查三角函数变换,及其单调区间.属于中档题.5、B【解题分析】试题分析:因为,所以,故选择B.考点:二项式定理.6、D【解题分析】
求出图象变换的函数解析式,再结合正弦函数的单调性可得出结论.【题目详解】由题意f(x)=sin2kπ-π∴kπ-π故选D.【题目点拨】本题考查三角函数的平移变换,考查三角函数的单调性.解题时可结合正弦函数的单调性求单调区间.7、D【解题分析】分析:根据甲队比乙队平均每场进球个数多,得到甲对的技术比乙队好判断①;根据两个队的标准差比较,可判断甲队不如乙队稳定;由平均数与标准差进一步可知乙队几乎每场都进球,甲队的表现时好时坏.详解:因为甲队每场进球数为,乙队平均每场进球数为,甲队平均数大于乙队较多,所以甲队技术比乙队好,所以①正确;因为甲队全年比赛进球个数的标准差为,乙队全年进球数的标准差为,乙队的标准差小于甲队,所以乙队比甲队稳定,所以②正确;因为乙队的标准差为,说明每次进球数接近平均值,乙队几乎每场都进球,甲队标准差为,说明甲队表现时好时坏,所以③④正确,故选D.点睛:本题考查了数据的平均数、方差与标准差,其中数据的平均数反映了数据的平均水平,方差与标准差反映了数据的稳定程度,一般从这两个方面对数据作出相应的估计,属于基础题.8、A【解题分析】
正品数比次品数少,包括一正三次和全部是次品两种情况,根据情况写出所有的组合数计算即可.【题目详解】正品数比次品数少,包括一正三次和全部是次品这两种情况为,总数为,所以概率为.选A.【题目点拨】本题考查概率问题,解题的关键是正确的求出所有可能的结果,属于基础题.9、D【解题分析】
利用扇形面积公式(为扇形的圆心角的弧度数,为扇形的半径),可计算出扇形的面积.【题目详解】由题意可知,扇形的面积为,故选D.【题目点拨】本题考查扇形面积的计算,意在考查扇形公式的理解与应用,考查计算能力,属于基础题.10、A【解题分析】
根据向量的运算法则展开后利用数量积的性质即可.【题目详解】.故选:A.【题目点拨】本题主要考查数量积的运算,属于基础题.11、D【解题分析】
根据题意,可知甲获胜情况有三种:第一局胜、第二局胜,第一局胜、第二局负、第三局胜,第一局负、第二局胜、第三局胜,由互斥事件概率加法运算即可求解.【题目详解】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即先赢2局者为胜,甲在每局比赛中获胜的概率为,则甲获胜有以下三种情况:第一局胜、第二局胜,则甲获胜概率为;第一局胜、第二局负、第三局胜,则甲获胜概率为;第一局负、第二局胜、第三局胜,则甲获胜概率为;综上可知甲获胜概率为,故选:D.【题目点拨】本题考查了互斥事件概率求法,概率加法公式的应用,属于基础题.12、C【解题分析】
先由求导公式求出,根据偶函数的性质求出,然后利用导函数的几何意义求出切线斜率,进而写出切线方程.【题目详解】,因为是偶函数,所以,即解得,所以,,则,所以切线方程为故选C【题目点拨】本题主要考查利用导函数求曲线上一点的切线方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:椭圆的左焦点为,右焦点为,根据椭圆的定义,,∴,由三角形的性质,知,当是延长线与椭圆的交点时,等号成立,故所求最大值为.考点:椭圆的定义,三角形的性质.14、【解题分析】
根据复数几何意义以及椭圆定义列关于的条件,再解不等式得的取值范围.【题目详解】因为表示的动点的轨迹是椭圆,所以复数所对应点距离小于4,即故答案为:【题目点拨】本题考查复数几何意义以及椭圆定义,考查综合分析求解能力,属中档题.15、【解题分析】分析:先根据流程图确定分段函数解析式,再求输出值为2的对应区间,最后根据几何概型概率公式求结果.详解:因为,所以输出值为2的对应区间为[0,2],因此输出值为2的概率为点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.16、142;【解题分析】
观察已知等式的规律,可猜想第行左边第一个奇数为后续奇数依次为:由第行第一个数为,即:,解得:,可得:,即可得解.【题目详解】第行等号左边第一个加数为第个奇数,即,于是第一个加数为,所以第个等式为,,【题目点拨】本题主要考查归纳与推理,猜想第行左边第一个奇数为进而后续奇数依次为:是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)分布列见解析,.【解题分析】分析:(1)利用对立事件即可求出答案;(2)耗用子弹数的所有可能取值为2,3,4,5,分别求出相应的概率即可.详解:(1)该士兵射击两次,至少射中一次目标的概率为.(2)耗用子弹数的所有可能取值为2,3,4,5.当时,表示射击两次,且连续击中目标,;当时,表示射击三次,第一次未击中目标,且第二次和第三次连续击中目标,;当时,表示射击四次,第二次未击中目标,且第三次和第四次连续击中目标,;当时,表示射击五次,均未击中目标,或只击中一次目标,或击中两次目标前四次击中不连续两次或前四次击中一次且第五次击中,或击中三次第五次击中且前四次无连续击中。;随机变量的数学期望.点睛:本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题.18、(1)①;②17,理由见解析;(2).【解题分析】
(1)①利用频率分布直方图能求出月销售额在,内的频率.②若的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据频率分布直方图知,,和,两组频率之和为0.18,由此能求出月销售额目标应确定的标准.(2)根据直方图可知,销售额为,和,的频率之和为0.08,由可知待选的推销员一共有4人,设这4人分别为,,,,利用列举法能求出选定的推销员来自同一个小组的概率.【题目详解】解:(1)①月销售额在小组内的频率为.②若要使70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定2为(万元).(2)根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则不同的选择为,一共有6种情况,每一种情况都是等可能的,而2人来自同一组的情况有2种,所以选出的推销员来自同一个小组的概率.【题目点拨】本题考查频率、月销售额目标、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.19、(1)见解析;(2).【解题分析】试题分析:表示一辆车从甲地到乙地遇到红灯的个数,的所有可能取值为0,1,2,3.分别求出相应的概率值,列出随机变量的分布列并计算数学期望,表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆遇上1次红灯两个事件的概率的和.试题解析:(Ⅰ)解:随机变量的所有可能取值为0,1,2,3.,,,.所以,随机变量的分布列为0123随机变量的数学期望.(Ⅱ)解:设表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共遇到1个红灯的概率为.【考点】离散型随机变量概率分布列及数学期望【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.20、(2)见解析(2);(3)见解析.【解题分析】
分析:(2)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.详解:(Ⅰ)在三棱柱ABC-A2B2C2中,∵CC2⊥平面ABC,∴四边形A2ACC2为矩形.又E,F分别为AC,A2C2的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC2.又CC2⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-2,0,0),D(2,0,2),F(0,0,2),G(0,2,2).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-2,c=-4,∴平面BCD的法向量,又∵平面CDC2的法向量为,∴.由图可得二面角B-CD-C2为钝角,所以二面角B-CD-C2的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,2),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(2)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)利切点为曲线和直线的公共点,得出,并结合列方程组求出实数、的值;(Ⅱ)解法1:由,得出,将问题转化为直线与曲线的图象有两个交点时,求出实数的取值范围,然后利用导数研究函数的单调性与极值,借助数形结合思想得出实数的取值范围;解法2:利用导数得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污水处理中的水资源保护与管理考核试卷
- 公共设施管理的建筑设计与工程管理考核试卷
- 塑料制品的噪声和振动控制技术考核试卷
- 炼铁过程中的环保标志使用管理考核试卷
- 光学仪器在历史学研究中的应用考核试卷
- 生产安全事故隐患治理与应急管理考核试卷
- 水利工程在城市社会心理健康和公共安全中的支撑作用考核试卷
- 机械生产安全知识课件考核试卷
- 新高考历史三轮冲刺过关练习专题17 综合冲刺专练(15+4模式)(解析版)
- DB11∕T 1809-2020 实验动物 微生物检测
- 民用无人机操控员执照(CAAC)考试复习重点题及答案
- 2024年中国南水北调集团水网水务投资限公司及下属单位社会招聘高频难、易错点500题模拟试题附带答案详解
- 广西南宁市第十四中学2023-2024学年七年级上学期期中地理试题
- 2024-2030年中国应急产业市场发展分析及竞争形势与投资机会研究报告
- 2024年中国电动鼻毛器市场调查研究报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- 缺乳(乳汁淤积)产妇的中医护理
- 《理解与尊重》主题班会
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
评论
0/150
提交评论