版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天一大联考高二数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳(约公元世纪)所著,该书主要记述了:积算(即筹算)太乙、两仪、三才、五行、八卦、九宫、运筹、了知、成数、把头、龟算、珠算计数种计算器械的使用方法某研究性学习小组人分工搜集整理种计算器械的相关资料,其中一人种、另两人每人种计算器械,则不同的分配方法有()A. B. C. D.2.已知函数,则使得成立的的解集为()A. B. C. D.3.设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为()A. B. C. D.4.已知的展开式中含的项的系数为,则()A. B. C. D.5.如图所示,阴影部分的面积为()A. B.1 C. D.6.的展开式的各项系数之和为3,则该展开式中项的系数为()A.2 B.8 C. D.-177.若当时,函数取得最大值,则()A. B. C. D.8.已知随机变量服从二项分布,则()A. B. C. D.9.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()2017201620152014……654321403340314029…………11975380648060………………201612816124……362820………A. B.C. D.10.已知方程有4个不同的实数根,则实数的取值范围是()A. B. C. D.11.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-212.在二项式的展开式中任取2项,则取出的2项中系数均为偶数的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知公比不为1的等比数列的首项,前项和为,若是与的等差中项,则__________.14.观察下列各式:,,,,由此可猜想,若,则__________.15.在极坐标系中,点到直线的距离为________.16.在中,,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别是且.(1)求角A;(2)若为钝角三角形,且,当时,求的取值范围.18.(12分)已知椭圆:的一个焦点为,点在上.(1)求椭圆的方程;(2)若直线:与椭圆相交于,两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.19.(12分)“蛟龙号”从海底中带回某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)若甲乙两小组各进行2次试验,求两个小组试验成功至少3次的概率.20.(12分)如图,有一块半椭圆形钢板,其长半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,梯形面积为.(1)当,时,求梯形的周长(精确到);(2)记,求面积以为自变量的函数解析式,并写出其定义域.21.(12分)已知函数在处取得极大值为.(1)求的值;(2)求曲线在处的切线方程.22.(10分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
本题涉及平均分组问题,先计算出分组的方法,然后乘以得出总的方法数.【题目详解】先将种计算器械分为三组,方法数有种,再排给个人,方法数有种,故选A.【题目点拨】本小题主要考查简单的排列组合问题,考查平均分组要注意的地方,属于基础题.2、A【解题分析】
由已知可得:是偶函数,当时,在为增函数,利用的单调性及奇偶性将转化成:,解得:,问题得解.【题目详解】因为所以是偶函数.当时,又在为增函数,在为减函数所以在为增函数所以等价于,解得:故选:A【题目点拨】本题主要考查了函数单调性及奇偶性的应用,还考查了转化思想及函数单调性的判断,属于中档题。3、A【解题分析】分析:利用椭圆定义的周长为,结合三点共线时,的最小值为,再利用对称性,可得椭圆的离心率.详解:的周长为,∴故选:A点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).4、D【解题分析】
根据所给的二项式,利用二项展开式的通项公式写出第项,整理成最简形式,令的指数为,求得,再代入系数求出结果.【题目详解】二项展开式通项为,令,得,由题意得,解得.故选:D.【题目点拨】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.5、B【解题分析】如图所示轴与函数围成的面积为,因此故选B.6、D【解题分析】
令得各项系数和,可求得,再由二项式定理求得的系数,注意多项式乘法法则的应用.【题目详解】令,可得,,在的展开式中的系数为:.故选D.【题目点拨】本题考查二项式定理,在二项展开式中,通过对变量适当的赋值可以求出一些特定的系数,如令可得展开式中所有项的系数和,再令可得展开式中偶数次项系数和与奇数次项系数和的差,两者结合可得奇数项系数和以及偶数项系数和.7、B【解题分析】
函数解析式提取5变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的性质可得结果.【题目详解】,其中,当,即时,取得最大值5,,则,故选B.【题目点拨】此题考查了两角和与差的正弦函数公式、辅助角公式的应用,以及正弦函数最值,熟练掌握公式是解本题的关键.8、A【解题分析】
由二项分布的公式即可求得时概率值.【题目详解】由二项分布公式:.故选A.【题目点拨】本题考查二项分布的公式,由题意代入公式即可求出.9、B【解题分析】
数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论.【题目详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故从右到左第1行的第一个数为:2×2﹣1,从右到左第2行的第一个数为:3×20,从右到左第3行的第一个数为:4×21,…从右到左第n行的第一个数为:(n+1)×2n﹣2,第2017行只有M,则M=(1+2017)•22015=2018×22015故答案为:B.【题目点拨】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.10、A【解题分析】分析:由于是偶函数,因此只要在时,方程有2个根即可.用分离参数法转化为求函数的极值.详解:由于是偶函数,所以方程有两个根,即有两个根.设,则,∴时,,递增,时,,递减,时,取得极大值也是最大值,又时,,时,,所以要使有两个根,则.故选A.点睛:本题考查方程根的分布与函数的零点问题,方程根的个数问题常常转化为函数图象交点个数,如能采用分离参数法,则问题转化为求函数的单调性与极值或值域.11、A【解题分析】
设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【题目详解】因故选:A【题目点拨】本题考查等比数列的性质以及通项公式,属于简单题.12、C【解题分析】
二项式的展开式共十项,从中任取2项,共有种取法,再研究其系数为偶数情况有几个,从中取两个有几种取法得出答案.【题目详解】二项式的展开式共十项,从中任取2项,共有种取法,展开式系数为偶数的有,共六个,取出的2项中系数均为偶数的取法有种取法,取出的2项中系数均为偶数的概率为故选:【题目点拨】本题考查二项式定理及等可能事件的概率,正确求解本题的关键是找出哪些项的系数是偶数,求出取出的2项中系数均为偶数的事件包含的基本事件数.二、填空题:本题共4小题,每小题5分,共20分。13、2017【解题分析】由题设可得,又,故,则,应填答案.14、.【解题分析】分析:观察下列式子,右边分母组成以为首项,为公差的对称数列,分子组成以为首项,以为公差的等差数列,即可得到答案.详解:由题意,,,,可得,所以.点睛:本题主要考查了归纳推理的应用,其中归纳推理的步骤是:(1)通过观察给定的式子,发现其运算的相同性或运算规律,(2)从已知的相同性或运算规律中推出一个明企鹅的一般性的题,着重考查了考生的推理与论证能力.15、3【解题分析】
将A和直线化成直角坐标系下点和方程,再利用点到直线的距离公式计算即可.【题目详解】由已知,在直角坐标系下,,直线方程为,所以A到直线的距离为.故答案为:3【题目点拨】本题考查极坐标方程与普通方程的互化,点到直线的距离,考查学生的运算求解能力,是一道容易题.16、【解题分析】
根据特殊角的三角函数值得到,,再由二倍角公式得到结果.【题目详解】∵,,,∴,∴,即.∵,∴,由二倍角公式得到:,∴.故答案为.【题目点拨】这个题目考查了特殊角的三角函数值的应用,以及二倍角公式的应用属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)由正弦定理化简可得,再结合余弦定理即可得到角;(2)结合(1)可得,利用正弦定理把求的范围转化为求,结合三角形的性质可得,由正弦函数的图形即可得到的范围,从而得到的取值范围.【题目详解】(1)因为由正弦定理得:,由余弦定理可知:所以又因为,故.(2)由(1)知,又,所以,且,则因为△ABC为钝角三角形且,则,所以,结合图象可知,,所以.【题目点拨】本题考查正弦定理与余弦定理的综合应用,考查学生的转化能力与计算能力,属于中档题.18、(1)(2)见解析【解题分析】
先求出c的值,再根据,又,即可得到椭圆的方程;假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,根据韦达定理求出点N的坐标,再根据,,即可求出m的值,可得点M的坐标【题目详解】由题意可得,点在C上,,又,解得,,椭圆C的方程为,假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,由,消去y可得,,解得,,,,,,依题意有,,由,可得,可得,由可得,,,代入上式化简可得,则,解得,当时,点满足题意,当时,点满足题意【题目点拨】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.19、(1);(2)【解题分析】
(1)“三次试验中至少两次试验成功”是指三次试验中,有2次试验成功或3次试验全部成功,先计算出2次与3次成功的概率,相加即可得到所要求的概率.(2)分成功3次,4次两种情况求其概率相加即可【题目详解】(1)设“甲小组做了三次实验,至少两次试验成功”为事件A,则其概率为.(2)设“甲乙两小组试验成功3次”为事件B,则,设“甲乙两小组试验成功4次”为事件C,则,故两个小组试验成功至少3次的概率为.【题目点拨】本题考查概率的求法,考查n次独立重复试验某事件恰好发生k次的概率、相互独立事件的概率乘法公式,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.20、(1)周长是;(2),定义域.【解题分析】分析:(1)以下底所在直线为轴,等腰梯形所在的对称轴为轴,建立直角坐标系,可得椭圆方程为,由题,,则代入椭圆方程得,可求,由此可求求梯形的周长.(2)由题可得,,由此可求,进而得到定义域.详解:(1)以下底所在直线为轴,等腰梯形所在的对称轴为轴,建立直角坐标系,可得椭圆方程为,,,∴代入椭圆方程得,∴,所以梯形的周长是;(2)得,∴,,定义域.点睛:本题考查了函数模型的应用问题,也考查了求函数定义域的问题,是综合性题目.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸娃娃课件教学课件
- 2024年古建筑亮化保护工程协议
- 2024年地摊经济创业项目经营权转让协议
- 2024个人助学贷款合作合同
- 2024年度4S店汽车销售与金融投资合同
- 2024丙公司与丁公司就煤炭废料处理服务的合同
- 2024年度腻子产品生产线改造合同
- 2024年己方区块链技术研究与应用合作协议
- 2024年度建筑工程安全防护合同
- 2024年度新能源汽车推广销售合同
- 有机合成化学(山东联盟)知到章节答案智慧树2023年青岛科技大学
- 商标法题库1(答案)
- TMF自智网络白皮书4.0
- 电视剧《国家孩子》观影分享会PPT三千孤儿入内蒙一段流淌着民族大爱的共和国往事PPT课件(带内容)
- 所水力除焦设备介绍
- 改革开放英语介绍-课件
- pet考试历届真题和答案
- 《企业员工薪酬激励问题研究10000字(论文)》
- 大学英语三级B真题2023年06月
- GB/T 7909-2017造纸木片
- GB/T 25217.6-2019冲击地压测定、监测与防治方法第6部分:钻屑监测方法
评论
0/150
提交评论