2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题含解析_第1页
2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题含解析_第2页
2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题含解析_第3页
2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题含解析_第4页
2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届三亚市重点中学数学高二第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某产品的广告费支出与销售额(单位:万元)之间的关系如下表,由此得到与的线性回归方程为,由此可得:当广告支出5万元时,随机误差的效应(残差)为()245683040605070A.-10 B.0 C.10 D.202.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.43.某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀.统计成绩后,得到如下的列联表.根据列联表的数据判断有多少的把握认为“成绩与班级有关系”()优秀非优秀合计甲班乙班合计临界值表:参考公式:.A. B. C. D.4.湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选科组合中某学生选择考历史和化学的概率为()A. B. C. D.5.如图,网格纸上小正方形的边长为,粗线条画出的是一个三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.6.已知集合,,若图中的阴影部分为空集,则构成的集合为()A. B.C. D.7.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A. B. C. D.8.已知椭圆,点在椭圆上且在第四象限,为左顶点,为上顶点,交轴于点,交轴于点,则面积的最大值为()A. B. C. D.9.已知复数z=2+i,则A. B. C.3 D.510.已知函数,则()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数11.设集合,,则()A. B. C. D.12.已知向量与的夹角为,,,则()A. B.2 C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.先阅读下面的文字:“求的值时,采用了如下的方式:令,则有,两边平方,可解得(负值舍去)”.那么,可用类比的方法,求出的值是__________.14.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.15..16.已知集合,且,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)分数[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲班频数1145432乙班频数0112664(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:,其中.临界值表P()0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)已知函数.(1)当时,解不等式;(2)关于x的不等式的解集包含区间,求a的取值范围.19.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.20.(12分)已知函数.(1)求函数的最小值;(2)当时,记函数的所有单调递增区间的长度为,所有单调递减区间的长度为,证明:.(注:区间长度指该区间在轴上所占位置的长度,与区间的开闭无关.)21.(12分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0;(I)求函数f(x)的极值;(II)当恒成立时,求实数m的取值范围(e为自然对数的底数)22.(10分)某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:每分钟跳绳个数得分1617181920年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.附:若随机变量服从正态分布,则,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由已知求得的值,得到,求得线性回归方程,令求得的值,由此可求解结论.【题目详解】由题意,根据表格中的数据,可得,所以,所以,取,得,所以随机误差的效应(残差)为,故选C.【题目点拨】本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.2、D【解题分析】可以是共4个,选D.3、C【解题分析】

计算出的观测值,利用临界值表找出犯错误的概率,可得出“成绩与班级有关系”的把握性.【题目详解】由表格中的数据可得,所以,,因此,有的把握认为“成绩与班级有关系”,故选C.【题目点拨】本题考查独立性检验的基本思想,解题的关键就是计算出的观测值,并利用临界值表找出犯错误的概率,考查计算能力,属于基础题.4、C【解题分析】

基本事件总数,在所有选项中某学生选择考历史和化学包含的基本事件总数,由此能求出在所有选项中某学生选择考历史和化学的概率.【题目详解】湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,基本事件总数,在所有选项中某学生选择考历史和化学包含的基本事件总数,在所有选项中某学生选择考历史和化学的概率为.故选.【题目点拨】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.5、B【解题分析】

由三视图得到该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.再由棱锥体积公式求解.【题目详解】由三视图还原原几何体,如图所示,该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.∴该三棱锥的体积.故选B.【题目点拨】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6、D【解题分析】

先化简集合,注意,由题意可知,,确定即可【题目详解】或,图中的阴影部分为空集,或,即或又,,故选D【题目点拨】考查维恩图的识别、对数计算、列举法及集合的关系7、B【解题分析】

记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率.【题目详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【题目点拨】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.8、C【解题分析】

若设,其中,则,求出直线,的方程,从而可得,两点的坐标,表示的面积,设出点处的切线方程,与椭圆方程联立成方程组,消元后判别式等于零,求出点的坐标可得答案.【题目详解】解:由题意得,设,其中,则,所以直线为,直线为,可得,所以,所以,设处的切线方程为由,得,,解得,此时方程组的解为,即点时,面积取最大值故选:C【题目点拨】此题考查了椭圆的性质,三角形面积计算公式,考查了推理能力与计算能力,属于难题.9、D【解题分析】

题先求得,然后根据复数的乘法运算法则即得.【题目详解】∵故选D.【题目点拨】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..10、D【解题分析】

根据题意,由函数的解析式可得f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,由指数函数的性质可得y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,据此分析可得答案.【题目详解】根据题意,f(x)=()x﹣2x,有f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,又由y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,故选:D.【题目点拨】本题考查函数的奇偶性与单调性的判断,关键是掌握函数奇偶性、单调性的判断方法,属于基础题.11、D【解题分析】函数有意义,则,函数的值域是,即.本题选择D选项.12、C【解题分析】

利用即可解决.【题目详解】由题意得,因为向量与的夹角为,,,所以,所以,所以,所以选择C【题目点拨】本题主要考查了向量模的计算,在解决向量模的问题时通常先计算出平方的值,再开根号即可,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:利用类比的方法,设,则有,解方程即可得结果,注意将负数舍去.详解:设,则有,所以有,解得,因为,所以,故答案是.点睛:该题考查的是有关类比推理的问题,在解题的过程中,需要对式子进行分析,得到对应的关系式,求得相应的结果.14、.【解题分析】

从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.15、【解题分析】试题分析:考点:定积分16、【解题分析】分析:求出,由,列出不等式组能求出结果.详解:根据题意可得,,由可得即答案为.点睛:本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有以上的把握认为“成绩优秀与教学方式有关”.(2)见解析.【解题分析】

(1)根据以上统计数据填写列联表,根据列联表计算的观测值k,对照临界值得出结论;(2)由题意知的可能取值,计算对应的概率值,写出的分布列,求期望即可.【题目详解】(1)补充的列联表如下表:甲班乙班总计成绩优秀成绩不优秀总计根据列联表中的数据,得的观测值为,所以有以上的把握认为“成绩优秀与教学方式有关”.(2)的可能取值为,,,,,,,,所以的分布列为【题目点拨】本题考查了独立性检验的问题和离散型随机变量的分布列与期望问题,是中档题.18、(1);(2)【解题分析】

(1)将代入中去绝对值后写为分段函数的形式,然后根据分别解不等式即可;(2)根据题意可知,恒成立,然后将问题转化对恒成立,令,再构造函数,,,根据解出的范围.【题目详解】解:(1),①当时,,解得,所以;②当时,,解得,所以;③当时,解得,所以.综上所述,不等式的解集为.(2)依题意得,恒成立,即,即,即,即.令,则,即,恒成立,即,构造函数,则解得.【题目点拨】本题考查了解绝对值不等式和不等式恒成立问题,考查了分类讨论思想和转化思想,考查了计算能力,属于中档题.19、(1)(2)【解题分析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1)(2)见解析【解题分析】

(1)首先求函数的导数,然后判断函数的单调性,最后求最值;(2)根据(1)首先求函数的零点,从而去掉的绝对值,分段求函数的单调区间,最后再比较单调区间的长度.【题目详解】解(1)因为,所以在单调递减,单调递增,所以.(2)由(1)可知,在单调递减,单调递增又,,所以存在,使得,则当时,,当时,所以,记,当时,,所以在单调递增,在单调递减.当或时,当时即在单调递增.因为,所以则当时,令,有所以当时,,在单调递减综上,在与单调递减,在与单调递增.所以,又所以,即【题目点拨】本题考查了利用函数的导数研究函数的单调性,属于中档题型,本题的一个难点是函数的零点,其中一个是,另一个不确定,只能估算其范围,设为,所以再求当或时,函数的单调区间时,也需估算比较的范围,确定时函数的减区间,这种估算零点存在性问题,是导数常考题型.21、(1)的极大值为,无极小值;(2).【解题分析】分析:(1)先根据导数几何意义得解得b,再根据得a,根据导函数零点确定单调区间,根据单调区间确定极值,(2)先化简不等式为,再分别求左右两个函数最值得左边最小值与右边最大值同时取到,则不等式转化为,解得实数m的取值范围.详解:(1)因为,所以因为点处的切线是,所以,且所以,即所以,所以在上递增,在上递减,所以的极大值为,无极小值(2)当恒成立时,由(1),即恒成立,设,则,,又因为,所以当时,;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论