版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省凤庆县第二中学数学高二下期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中含项的系数为()A.160 B.210 C.120 D.2522.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.丁可以知道四人的成绩3.已知点P(x,y)的坐标满足条件那么点P到直线3x-4y-13=0的距离的最小值为()A.2 B.1 C. D.4.设是平面内的两条不同直线,是平面内两条相交直线,则的一个充分不必要条件是()A.B.C.D.5.已知点F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则M点的纵坐标为()A.2 B.4 C.±2 D.±46.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有()A.种 B.种 C.种 D.种7.函数的一个零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.在△ABC中,,,,则角B的大小为()A. B. C. D.或9.已知三棱锥的体积为,,,,,且平面平面PBC,那么三棱锥外接球的体积为()A. B. C. D.10.已知定义在上的连续奇函数的导函数为,当时,,则使得成立的的取值范围是()A. B. C. D.11.某大学安排5名学生去3个公司参加社会实践活动,每个公司至少1名同学,安排方法共有()种A.60 B.90 C.120 D.15012.在含有2件次品的6件产品中任取3件,恰有1件次品的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的值域为,函数的单调减区间为,则________.14.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第__________行(填行数).15.如图所示,直线分抛物线与轴所围图形为面积相等的两部分,则的值为__________.16.某单位为了了解用电量(单位:千瓦时)与气温(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1用电量/千瓦时24343864由表中数据得回归直线方程中,预测当气温为℃时,用电量的千瓦时数约为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知,都是正数,并且,求证:;(2)若,都是正实数,且,求证:与中至少有一个成立.18.(12分)(江苏省南通市高三最后一卷---备用题数学试题)已知函数,其中.(1)当时,求函数处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.19.(12分)已知集合,.(1)求集合的补集;(2)若“”是“”的必要条件,求实数的取值范围.20.(12分)已知函数.(1)若函数是偶函数,求的值;(2)若函数在上,恒成立,求的取值范围.21.(12分)[选修4-5:不等式选讲]已知函数=|x-a|+(a≠0)(1)若不等式-≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围22.(10分)已知函数,.(1)当时,求函数的单调区间;(2)当时,若存在,使不等式成立,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先化简,再由二项式通项,可得项的系数.【题目详解】,,当时,.故选D.【题目点拨】本题考查二项式展开式中指定项的系数,解题关键是先化简再根据通项公式求系数.2、A【解题分析】
根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【题目详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【题目点拨】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.3、A【解题分析】
由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点到直线的最小值,即可求解.【题目详解】由约束条件作出可行域,如图所示,由图可知,当与重合时,点到直线的距离最小为.故选:A.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4、B【解题分析】试题分析:A.不能得出,所以本题条件是的不充分条件;B.,当时,不一定有故本命题正确;C.不能得出,故不满足充分条件;D.不能得出,故不满足充分条件;故选B.考点:平面与平面垂直的方法.5、C【解题分析】
求出抛物线的焦点坐标,推出M的坐标,然后求解,得到答案.【题目详解】由题意,抛物线的焦点,是上一点,的延长线交轴于点,若为的中点,如图所示,可知的横坐标为1,则的纵坐标为,故选C.【题目点拨】本题主要考查了抛物线的简单性质的应用,着重考查了推理与运算能力,属于基础题.6、D【解题分析】分析:据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.详解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C32C1973种,“有3件次品”的抽取方法有C33C1972种,则共有C32C1973+C33C1972种不同的抽取方法,故选:D.点睛:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最多”“最少”等情况的分类讨论.7、C【解题分析】
根据函数零点的判定定理进行判断即可【题目详解】是连续的减函数,又可得f(2)f(3)<0,∴函数f(x)的其中一个零点所在的区间是(2,3)故选C【题目点拨】本题考查了函数零点的判定定理,若函数单调,只需端点的函数值异号即可判断零点所在区间,是一道基础题.8、A【解题分析】
首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【题目详解】在△ABC中有,所以,所以,又因为,所以,所以,因为,,所以由正弦定理得,因为,所以。所以选择A【题目点拨】本题主要考查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。9、D【解题分析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,,,,显然是其外接球球心,因此.故选D.考点:棱锥与外接球,体积.10、C【解题分析】
根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【题目详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:【题目点拨】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.11、D【解题分析】分析:由题意结合排列组合公式整理计算即可求得最终结果.详解:由题意可知,5人的安排方案为或,结合平均分组计算公式可知,方案为时的方法有种,方案为时的方法有种,结合加法公式可知安排方法共有种.本题选择D选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12、A【解题分析】
求出基本事件的总数和恰有1件次品包含的基本事件个数即可.【题目详解】在含有2件次品的6件产品中任取3件,基本事件的总数为:恰有1件次品包含的基本事件个数为在含有2件次品的6件产品中任取3件,恰有1件次品的概率为故选:A【题目点拨】本题考查的是古典概型及组合的知识,较简单.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由的值域为,,可得,由单调递减区间为,,结合函数的单调性与导数的关系可求.【题目详解】由的值域为,,可得,,,,由单调递减区间为,,可知及是的根,且,把代入可得,,解可得,或,当时,可得,当时,代入可得不符合题意,故,故答案为:.【题目点拨】本题考查二次函数的性质及函数的导数与单调性的关系的应用,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.14、98【解题分析】
通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【题目详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【题目点拨】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.15、【解题分析】
根据题意求出直线与抛物线的交点横坐标,再根据定积分求两部分的面积,列出等式求解即可.【题目详解】联立或.由图易得由题设得,即.即化简得.解得.故答案为:【题目点拨】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.16、68.【解题分析】分析:先求出样本中心,根据回归直线方程过样本中心求得,然后再进行估计.详解:由题意得,∴样本中心为.∵回归直线方程过样本中心,∴,∴.∴回归直线方程为.当时,,即预测当气温为℃时,用电量的千瓦时数约为.点睛:在回归分析中,线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本点中的参数.另外,利用回归方程可进行估计、作出预测.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解题分析】
(1)利用综合法,将两式做差,化简整理,即可证明(2)利用反证法,先假设原命题不成立,再推理证明,得出矛盾,即得原命题成立。【题目详解】(1)因为,都是正数,所以,又,所以,所以,所以,即.(2)假设和都不成立,即和同时成立.且,,.两式相加得,即.此与已知条件相矛盾,和中至少有一个成立.【题目点拨】本题主要考查综合法和反证法证明,其中用反证法证明时,要从否定结论开始,经过正确的推理,得出矛盾,即假设不成立,原命题成立,进而得证。18、(1).(2).(3).【解题分析】
(1)首先将代入函数解析式,求出函数的导数,求出函数的切线的斜率,利用点斜式写出直线的方程,化简求得结果;(2)求出函数的导数,利用函数存在两个极值点,是方程的两个不等正根,韦达定理得到关系,将化为关于的函数关系式,利用导数求得结果;(3)将恒成立问题应用导数来研究,分类讨论,求得结果.【题目详解】(1)当时,,故,且,故所以函数在处的切线方程为(2)由,可得因为函数存在两个极值点,所以是方程的两个不等正根,即的两个不等正根为所以,即所以令,故,在上单调递增,所以故得取值范围是(3)据题意,对任意的实数恒成立,即对任意的实数恒成立.令,则①若,当时,,故符合题意;②若,(i)若,即,则,在上单调赠所以当时,,故符合题意;(ii)若,即,令,得(舍去),,当时,,在上单调减;当时,,在上单调递增,所以存在,使得,与题意矛盾,所以不符题意.③若,令,得当时,,在上单调增;当时,,在上单调减.首先证明:要证:,即要证:,只要证:因为,所以,故所以其次证明,当时,对任意的都成立令,则,故在上单调递增,所以,则所以当时,对任意的都成立所以当时,即,与题意矛盾,故不符题意,综上所述,实数的取值范围是.【题目点拨】该题考查的是有关应用导数研究函数的问题,在解题的过程中,涉及到的知识点有导数的几何意义,应用导数研究函数的极值点,应用导数研究不等式恒成立问题,涉及到的解题思想是分类讨论,注意思路清晰是解题的关键.19、(1)或;(2)【解题分析】
(1)先解中不等式,得出取值范围,再利用数轴得到的补集;(2)由必要条件得出是的子集,再通过子集的概念,得出的取值范围.【题目详解】(1),或.(2)“”是“”的必要条件,则,,解得:,即的取值范围是.【题目点拨】本题考查集合的基本运算和简易逻辑中的充分条件与必要条件,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为集合间的关系.20、(1);(2)【解题分析】
(1)利用偶函数的定义判断得解;(2)对x分三种情况讨论,分离参数求最值即得实数k的取值范围.【题目详解】(1)由题得,由于函数g(x)是偶函数,所以,所以k=2.(2)由题得在上恒成立,当x=0时,不等式显然成立.当,所以在上恒成立,因为函数在上是减函数,所以.当时,所以在上恒成立,因为函数在上是减函数,在上是增函数,所以.综合得实数k的取值范围为.【题目点拨】本题主要考查函数的奇偶性的判断,考查函数的单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1)1.(2)[-,0).【解题分析】分析:第一问首先根据题中所给的函数解析式,将相应的变量代入可得结果,之后应用绝对值不等式的性质得到其差值不超过,这就得到|m|≤1,解出范围从而求得其最大值,第二问解题的方向就是向最小值靠拢,应用最小值小于零,从而求得参数所满足的条件,求得结果.详解:(Ⅰ)∵f(x)=|x-a|+,∴f(x+m)=|x+m-a|+,∴f(x)-f(x+m)=|x-a|-|x+m-a|≤|m|,∴|m|≤1,∴-1≤m≤1,∴实数m的最大值为1;(Ⅱ)当a<时,g(x)=f(x)+|2x-1|=|x-a|+|2x-1|+=∴g(x)min=g()=-a+=≤0,∴或,∴-≤a≤0,∴实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焊接培训资料:钨极氩弧焊TIG的操作要点
- 拓展市场销售总结
- 党课课件严以律己风清气正深入促进领导干部廉洁自律
- 环保客服工作总结
- 健身房前台接待总结
- 社交活动策划员工作总结
- 税务管理总结
- 给排水工程师的工作重点及技术难点
- 2022年河南省三门峡市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年山西省大同市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 严重精神障碍患者健康管理服务规范
- 最全-房屋市政工程安全生产标准化指导图册
- 风险预测分析及风险与机遇评估分析表
- 高中日语宣讲 试听课件
- 压力弹簧力度计算器及计算公式
- 新生儿窒息诊断地专家共识
- 2023年重庆市旅游业统计公报要点
- 器械清洗的资料
- 路立得4.1roadleaderv3.0说明书Roadleader是鸿业研制的BIM系列软件之一旨在
- 陕西省教育科学规划课题开题报告
- 三大构成之立体构成-课件
评论
0/150
提交评论