2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题含解析_第1页
2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题含解析_第2页
2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题含解析_第3页
2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题含解析_第4页
2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省通渭县数学高二下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线方程为A. B. C. D.2.设函数,若,则正数的取值范围为()A. B. C. D.3.二项式的展开式中的常数项是A.第10项 B.第9项 C.第8项 D.第7项4.已知的展开式中的系数为,则()A.1 B. C. D.5.某人考试,共有5题,至少解对4题为及格,若他解一道题正确的概率为0.6,则他及格的概率为()A. B. C. D.6.设的展开式的各项系数之和为M,二项式系数之和为N,若240,则展开式中x的系数为()A.300 B.150 C.-150 D.-3007.点的直角坐标为,则点的极坐标为()A.B.C.D.8.已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则()A. B. C. D.9.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知圆,在圆中任取一点,则点的横坐标小于的概率为()A. B. C. D.以上都不对11.已知正实数、、满足,,,则、、的大小关系是()A. B. C. D.12.设,则的值为()A.2 B.2046 C.2043 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.设实数满足,则的最小值为______14.数列定义为,则_______.15.已知平面向量,满足,,则向量与夹角的取值范围是______.16.已知(是虚数单位),则的共轭复数为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:男女总计看保质期822不看保持期414总计(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.附:,().临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知函数fx(1)解不等式fx(2)若gx=3x-2m+3x-1,对∀x119.(12分)从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.20.(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为:(Ⅰ)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.21.(12分)(1)用分析法证明:;(2)用反证法证明:三个数中,至少有一个大于或等于.22.(10分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一年度未发生有责任道路交通事故下浮10%上两年度未发生有责任道路交通事故下浮上三年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10%上一个年度发生有责任交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型A1A2A3A4A5A6数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据题意可知,结合导数的几何意义,先对函数进行求导,求出点处的切线斜率,再根据点斜式即可求出切线方程。【题目详解】由题意知,因此,曲线在点处的切线方程为,故答案选C。【题目点拨】本题主要考查了利用导数的几何意义求切线方程,一般利用点斜式构造直线解析式。2、C【解题分析】分析:先求出最大值,再求出的最大值,从而化恒成立问题为最值问题.详解:令,,令,解得,在、单调递增,在单调递减,又,又,当时,令,解得,在上单调递增,在上单调递减.;当时,无最大值,即不符合;故有,解得,故.故选:C.点睛:本题考查了函数的性质的判断与应用,同时考查了恒成立问题与最值问题的应用.3、B【解题分析】展开式的通项公式Tr+1=,令=0,得r=8.展开式中常数项是第9项.选B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.4、D【解题分析】

由题意可得展开式中x2的系数为前一项中常数项与后一项x的二次项乘积,加上第一项x的系数与第二项x的系数乘积的和,由此列方程求得a的值.【题目详解】根据题意知,的展开式的通项公式为,∴展开式中含x2项的系数为a=,即10﹣5a=,解得a=.故选D.【题目点拨】本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式是解决此类问题的关键.5、C【解题分析】

由题,得他及格的情况包含答对4题和5题,根据独立重复试验的概率公式,即可得到本题答案.【题目详解】由题,得他及格的情况包括答对4题和5题,所以对应的概率.故选:C【题目点拨】本题主要考查独立重复试验的概率问题,属基础题.6、B【解题分析】

分别求得二项式展开式各项系数之和以及二项式系数之和,代入,解出的值,进而求得展开式中的系数.【题目详解】令,得,故,解得.二项式为,展开式的通项公式为,令,解得,故的系数为.故选B.【题目点拨】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.7、A【解题分析】试题分析:,,又点在第一象限,,点的极坐标为.故A正确.考点:1直角坐标与极坐标间的互化.【易错点睛】本题主要考查直角坐标与极坐标间的互化,属容易题.根据公式可将直角坐标与极坐标间互化,当根据求时一定要参考点所在象限,否则容易出现错误.8、B【解题分析】

由双曲线的离心率可得a=b,求得双曲线的渐近线方程,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),联立渐近线方程,求得B,C的坐标,再由向量共线定理,可得所求比值.【题目详解】由双曲线的离心率为,可得ca,即有a=b,双曲线的渐近线方程为y=±x,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),由y=x和y=2(x﹣c),可得B(2c,2c),由y=﹣x和y=2(x﹣c)可得C(,),设λ,即有0﹣2c=λ(0),解得λ=1,即则1.故选:B.【题目点拨】本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查方程思想和运算能力,属于中档题.9、A【解题分析】

化简求得复数为,然后根据复数的几何意义,即可得到本题答案.【题目详解】因为,所以在复平面内对应的点为,位于第一象限.故选:A【题目点拨】本题主要考查复数的四则运算和复数的几何意义,属基础题.10、C【解题分析】分析:画出满足条件的图像,计算图形中圆内横坐标小于的面积,除以圆的面积。详解:由图可知,点的横坐标小于的概率为,故选C点睛:几何概型计算面积比值。11、A【解题分析】

计算出的值,然后考虑的大小.【题目详解】因为,所以,则,故选:A.【题目点拨】指对式的比较大小,可以从正负的角度来分析,也可以从同指数的角度来分析大小.12、D【解题分析】分析:先令得,再令得,解得结果.详解:令得令得=0因此,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.二、填空题:本题共4小题,每小题5分,共20分。13、-3【解题分析】

作出不等式组对应的平面区域,设,利用目标函数的几何意义,利用数形结合确定的最小值,得到答案.【题目详解】由题意,画出约束条件所对应的平面区域,如图所示,设,则,当直线过点A时,直线在轴上的截距最大,此时目标函数取得最小值,由,解得,所以目标函数的最小值为.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、【解题分析】

由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【题目详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【题目点拨】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.15、【解题分析】

由已知,得,由,得,由不等式可知,再由,得,最后由可得解.【题目详解】由,,得,即由,得,即由,得由,得所以,.故答案为:【题目点拨】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.16、【解题分析】

根据复数的四则运算以及共轭复数的概念即可求解.【题目详解】,,共轭复数为故答案为【题目点拨】本题主要考查复数的四则运算以及共轭复数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为“性别”与“是否看食品保质期”有关系(1)分布列见解析,【解题分析】(分析:1)将列联表填写完整,求出,然后判断性别与是否看保质期之间是否有关系.

(1)判断的取值为0,1,1.3,求出概率,然后得到分布列,求解期望即可.详解:(1)填表如下:男女总计看保质期81411不看保质期10414总计181836根据列联表中的数据,可得.故有的把握认为“性别”与“是否看食品保质期”有关系.(1)由题意可知,的所有可能取值为,,,,,所以.点睛:本题考查离散型随机变量的分布列期望的求法,对立检验的应用,考查计算能力.18、(1)x|0≤x≤1;(2)-1【解题分析】

(1)对x分类讨论,将不等式转化为代数不等式,求解即可;(2)分别求出函数的最值,利用最值建立不等式,即可得到实数m的取值范围..【题目详解】解:(1)不等式等价于x≤-1,-3x≤x+2,或-1<x≤1解得x∈∅或0≤x≤12或12<x≤1(2)由f(x)=-3x,x≤-1,-x+2,-1<x≤12,g(x)≥|(3x-2m)-(3x-1)|=|2m-1|,当且仅当(3x-2m)(3x-1)≤0时取等号,所以|2m-1|≤32,解得-14≤m≤54【题目点拨】本题考查方程有解问题,考查不等式的解法,考查转化思想以及计算能力.19、(1);(2)的分布列为

1

2

3

4

【解题分析】

(I)(II);;;;X的分布列为X

1

2

3

4

P

点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到.而分布列的求解关键是对于各个概率值的求解,属于中档题.20、(Ⅰ)(x-1)2+(y-1)2【解题分析】试题分析:(Ⅰ)由ρ2=x2+y2,x=ρcosθ,y=ρsinθ试题解析:(Ⅰ)由已知ρ=2(sinθ+cos所以x2+y2=2y+2x由x=2+t,y=-1+t,得y=-1+(x-2),所以直线l的普通方程为x-y-3=0(Ⅱ)由圆的几何性质知点P到直线l的距离的最小值为圆心C到直线l的距离减去圆的半径,令圆心C到直线l的距离为d,则d=|-1+1-3|所以最小值为32考点:极坐标方程化为直角坐标方程,参数方程化为普通方程,直线与圆位置关系21、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)结合不等式的特征,两边平方,用分析法证明不等式即可;(2)利用反证法,假设这三个数没有一个大于或等于,然后结合题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论