版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省资阳市数学高二第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的函数的图象关于对称,且当时,单调递减,若,,,则a,b,c的大小关系是A. B. C. D.2.已知抛物线,过点的任意一条直线与抛物线交于两点,抛物线外一点,若∠∠,则的值为()A. B. C. D.3.若,是第三象限的角,则()A. B. C. D.4.已知展开式的常数项为15,则()A. B.0 C.1 D.-15.设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则()A.1或9 B.6 C.9 D.以上都不对6.设,若,则=()A. B. C. D.7.过双曲线的一个焦点向其一条渐近线作垂线,垂足为,为坐标原点,若的面积为1,则的焦距为()A. B.3 C. D.58.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样9.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间中可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则为()A. B. C. D.10.已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.11.下列函数中,既是偶函数又在上单调递增的是()A. B.C. D.12.下列5个命题中:①平行于同一直线的两条不同的直线平行;②平行于同一平面的两条不同的直线平行;③若直线与平面没有公共点,则;④用一个平面截一组平行平面,所得的交线相互平行;⑤若,则过的任意平面与的交线都平行于.其中真命题的个数是()A.2 B.3 C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.设,,,则a,b,c的大小关系用“”连接为______.14.直线:,:.则“”是“与相交”的__________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)15.《九章算术》卷五《商功》中有如下叙述“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈“刍甍”指的是底面为矩形的对称型屋脊状的几何体,“下广三丈”是指底面矩形宽三丈,“袤四丈”是指底面矩形长四丈,“上袤二丈”是指脊长二丈,“无宽”是指脊无宽度,“高一丈”是指几何体的高为一丈.现有一个刍甍如图所示,下广三丈,袤四丈,上袤三丈,无广,高二丈,则该刍甍的外接球的表面积为_______________平方丈.16.在xOy平面上,将双曲线的一支及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过作的水平截面,计算截面面积,利用祖暅原理得出体积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,若曲线和曲线在处的切线都垂直于直线.(Ⅰ)求,的值.(Ⅱ)若时,,求的取值范围.18.(12分)已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)19.(12分)已知.(1)当,时,求不等式的解集;(2)当,时,的图象与x轴围成的三角形面积大于24,求的取值范围.20.(12分)如图,在四棱锥中,底面是矩形,平面平面,,点在棱上,,点是棱的中点,求证:(1)平面;(2)平面.21.(12分)已知数列满足,.(I)求,,的值;(Ⅱ)归纳猜想数列的通项公式,并用数学归纳法证明.22.(10分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先根据对称性将自变量转化到上,再根据时单调递减,判断大小.【题目详解】∵定义在上的函数的图像关于对称,∴函数为偶函数,∵,∴,∴,,.∵当时,单调递减,∴,故选A.【题目点拨】比较两个函数值或两个自变量的大小:首先根据函数的性质把两个函数值中自变量调整到同一单调区间,然后根据函数的单调性,判断两个函数值或两个自变量的大小2、D【解题分析】
设出点和直线,联立方程得到关于的韦达定理,将转化为斜率相反,将根与系数关系代入得到答案.【题目详解】设,设直线AB:又恒成立即答案为D【题目点拨】本题考查了直线和抛物线的位置关系,定点问题,设直线方程时消去可以简化运算,将角度关系转化为斜率关系是解题的关键,计算量较大,属于难题.3、B【解题分析】
先利用同角三角函数的基本关系计算出的值,然后利用两角和的正弦公式可计算出的值.【题目详解】是第三象限角,,且,因此,,故选B.【题目点拨】本题考查两角和的正弦公式计算三角函数值,解题时充分利用同角三角函数的基本关系进行计算,考查运算求解能力,属于基础题.4、A【解题分析】
先求出二项式展开式的通项公式,再令的幂指数等于0,求得的值,即可求得展开式中的常数项,再根据常数项为15,求得的值.【题目详解】解:二项式的展开式的通项公式为,令,求得,可得展开式中的常数项为,由此求得,故选:.【题目点拨】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5、C【解题分析】
根据双曲线的一条渐近线方程为求出,由双曲线的定义求出,判断点在左支上,即求.【题目详解】双曲线的渐近线方程为,又双曲线的一条渐近线方程为,.由双曲线的定义可得,又,或.点在左支上,.故选:.【题目点拨】本题考查双曲线的定义和性质,属于基础题.6、C【解题分析】
先计算,带入,求出即可。【题目详解】对求导得将带入有。【题目点拨】本题考查函数求导,属于简单题。7、C【解题分析】
利用点到直线的距离可求得,进而可由勾股定理求出,再由解方程即可求出结果.【题目详解】不妨设,则其到渐近线的距离,在直角中,,所以,所以,所以椭圆C的焦距为.故选:C.【题目点拨】本题主要考查双曲线的几何性质,点到直线的距离公式,同时考查方程的思想,属于基础题.8、C【解题分析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.9、B【解题分析】
平面图形类比空间图形,二维类比三维,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.【题目详解】设正四面体P-ABC的边长为a,设E为三角形ABC的中心,H为正四面体P-ABC的中心,则HE为正四面体P-ABC的内切球的半径r,BH=PH且为正四面体P-ABC的外接球的半径R,所以BE=,所以在中,,解得,所以R=PE-HE=,所以,根据的球的体积公式有,,故选:B.【题目点拨】本题考查类比推理,常见类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.10、B【解题分析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选11、B【解题分析】
根据基本初等函数的单调性和奇偶性,逐一分析四个函数在上的单调性和奇偶性,逐一比照后可得答案.【题目详解】对于A:是奇函数,对于B:为偶函数,且在上单调递增;对于C:为偶函数,但在上单调递减;对于D:是减函数;所以本题答案为B.【题目点拨】本题主要考查函数的奇偶性与单调性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(1为偶函数,-1为奇函数).12、C【解题分析】
根据平行公理判定①的真假;根据线线位置关系,判定②的真假;根据线面平行的概念,判定③的真假;根据面面平行的性质,判断④的真假;根据线面平行的性质,判断⑤的真假.【题目详解】对于①,根据平行公理,平行于同一直线的两条不同的直线平行,①正确;对于②,平行于同一平面的两条不同的直线,可能平行、异面或相交;②错误;对于③,根据线面平行的概念,若直线与平面没有公共点,所以,③正确;对于④,根据面面平行的性质,用一个平面截一组平行平面,所得的交线相互平行,④正确;对于⑤,根据线面平行的性质,若,则过的任意平面与的交线都平行于,⑤正确.故选:C【题目点拨】本题主要考查线面关系、面面关系相关命题的判定,熟记平面的性质,平行公理,线面位置关系,面面位置关系即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
分别判断出,,,从而得到三者大小关系.【题目详解】,,则的大小关系用“”连接为本题正确结果:【题目点拨】本题考查指对数比较大小类的问题,解决此类问题的方法主要有两种:1.构造合适的函数模型,利用单调性判断;2.利用临界值进行区分.14、必要不充分【解题分析】分析:先根据直线相交得条件,再根据两个条件关系确定充要性.详解:因为与相交,所以所以“”是“与相交”的必要不充分条件.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.15、【解题分析】
连结,交于,可得,即可确定点为刍甍的外接球的球心,利用球的表面积公式即可得到答案.【题目详解】如图,连结,,连结,交于,可得,由已知可得,所以点为刍甍的外接球的球心,该球的半径为,所以该刍甍的外接球的表面积为.故答案为:【题目点拨】本题主要考查多面体外接球表面积的求法,同时考查数形结合思想,属于中档题.16、.【解题分析】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支及其渐近线和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a与渐近线交于一点A(,a)点,与双曲线的一支交于B(,a)点,记D绕y轴旋转一周所得的几何体为Ω.过(0,y)(0≤y≤4)作Ω的水平截面,则截面面积S=,利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积,∴Ω的体积V=9π×4=36π,故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),(Ⅱ)的取值范围是.【解题分析】试题分析:(Ⅰ)根据导数的几何意义求解即可.(Ⅱ)由(Ⅰ)设,则,故只需证即可.由题意得,即,又由,得,,分,,三种情况分别讨论判断是否恒成立即可得到结论.试题解析:(I)∵,∴,,由题意得,,解得,.∴,.(II)由(I)知,,设,则,由题设可得,即,令,得,.(i)若,则,从而当时,,单调递减,当时,,单调递增,故在的最小值为,而,故当时,,即恒成立.(ii)若,则,从而当时,,即在单调递增,而,故当时,,即恒成立.(iii)若,,则在上单调递增,而,从而当时,不可能恒成立,综上可得的取值范围是.18、(1);(2);【解题分析】
(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【题目详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【题目点拨】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.19、(1);(2).【解题分析】分析:(1)将代入函数解析式,利用零点分段法,将绝对值不等式转化为若干个不等式组,最后求并集得到原不等式的解集;(2)结合的条件,将函数解析式化简,化为分段函数的形式,求得相关点的坐标,利用面积公式,得到参数所满足的不等关系式,从而求得结果.详解:(1)当时,.不等式等价于或或解得或,即.所以不等式的解集是.(2)由题设可得,所以函数的图象与轴围成的三角形的三个顶点分别为,,.所以三角形的面积为.由题设知,解得.点睛:该题考查的是有关绝对值不等式的问题,一是需要明确采用零点分段法求解绝对值不等式,二是会应用题的条件,寻找参数所满足的对应的式子,最后求解即可得结果.20、(1)见解析;(2)见解析.【解题分析】分析:(1),所以点是棱的中点,所以,所以,所以平面.(2)先证明平面所以,又因为,所以平面.详解:证明:(1)因为在中,,所以点是棱的中点.又点是棱的中点,所以是的中位线,所以.因为底面是矩形,以,所以.又平面,平面,所以平面.(2)因为平面平面,平面,平面平面,所以平面.又平面,所以.因为,,,平面,平面,所以平面.点睛:线面垂直的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度科技研究与开发合同
- 《论我国民事拟制自认制度的完善》
- 《吉利并购沃尔沃汽车的绩效分析》
- 《同人作品的权利冲突研究》
- 《绿色金融对制造业转型升级的影响研究》
- 《天津市常见观赏树种光合特性及生态功能研究》
- 2024年哈尔滨客运资格考试技巧答题软件
- 2024年南昌客运资格证考试题库答案
- 2024年银川客运资格证考题技巧和方法
- 人教部编版六年级语文上册第13课《桥》精美课件
- 2024二十届三中全会知识竞赛题库及答案
- 预防接种工作规范(2023年版)解读课件
- 医院检验外包服务项目招标文件
- 档案整理及数字化服务方案
- 正高级会计师答辩面试资料
- 田间生产管理记录档案
- 道路桥涵工程施工方案(完整版)
- 智慧城市建设论文5篇
- 人教版八年级地理(上册)期中试卷及答案(完整)
- 园林绿化工程施工及验收规范(完整版)
- 光伏冬季施工方案(1)(完整版)
评论
0/150
提交评论