版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省濮阳市油田三高高二数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是()A.30 B.31 C.32 D.342.已知双曲线的焦点坐标为,,点是双曲线右支上的一点,,的面积为,则该双曲线的离心率为()A. B. C. D.3.根据如下样本数据得到的回归方程为,则
3
4
5
6
7
8
A., B., C., D.,4.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为A. B. C. D.5.已知正方体的棱长为2,P是底面上的动点,,则满足条件的点P构成的图形的面积等于()A. B. C. D.6.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为()A. B. C. D.7.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,是坐标原点,则的内切圆半径为A. B. C. D.8.是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数9.对于函教f(x)=ex(x-1)A.1是极大值点 B.有1个极小值 C.1是极小值点 D.有2个极大值10.的展开式存在常数项,则正整数的最小值为()A.5 B.6 C.7 D.1411.命题“,”的否定为()A., B.,C., D.,12.设,,若,则的最小值为A. B.8 C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.14.曲线在x=1处的切线方程是____________.15.i为虚数单位,设复数z满足,则z的虚部是____16.已知复数满足,为虚数单位,则复数的模____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.18.(12分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.19.(12分)设,.(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.20.(12分)已知矩阵,向量.(1)求的特征值、和特征向量、;(2)求的值.21.(12分)用数学归纳法证明:当时,能被7整除.22.(10分)某研究机构为了调研当代中国高中生的平均年龄,从各地多所高中随机抽取了40名学生进行年龄统计,得到结果如下表所示:年龄(岁)数量6101284(Ⅰ)若同一组数据用该组区间的中点值代表,试估计这批学生的平均年龄;(Ⅱ)若在本次抽出的学生中随机挑选2人,记年龄在间的学生人数为,求的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】每个图形中火柴棒的根数构成一个等差数列,首项为4,公差为3.其数列依次为4,7,10,13,…,所以第10个图形中火柴棒的根数为.2、B【解题分析】
由的面积为,可得,再由余弦定理求出,根据双曲线的定义可得,从而可得结论.【题目详解】因为的面积为,,所以,可得,,,所以离心率,故选B.【题目点拨】本题主要考查双曲线的定义及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.3、B【解题分析】
试题分析:由表格数据的变化情况可知回归直线斜率为负数,中心点为,代入回归方程可知考点:回归方程4、C【解题分析】
根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【题目详解】设椭圆的左焦点为,为短轴的上端点,连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又四边形为平行四边形又,解得:点到直线距离:,解得:,即本题正确选项:【题目点拨】本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.5、A【解题分析】
P是底面上的动点,因此只要在底面上讨论即可,以为轴建立平面直角坐标系,设,根据已知列出满足的关系.【题目详解】如图,以为轴在平面内建立平面直角坐标系,设,由得,整理得,设直线与正方形的边交于点,则点在内部(含边界),易知,,∴,.故选A.【题目点拨】本题考查空间两点间的距离问题,解题关键是在底面上建立平面直角坐标系,把空间问题转化为平面问题去解决.6、C【解题分析】
求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a,再由a,b,c的关系和离心率公式,即可得到所求.【题目详解】双曲线的渐近线方程为,直线的斜率为,由题意有,所以,,故离心率.故选:C.【题目点拨】本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题.7、D【解题分析】
由抛物线的定义将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值.所以,解得,由内切圆的面积公式,解得.故选D.8、D【解题分析】
整理,即可判断选项.【题目详解】由题,因为,所以该函数是奇函数,周期为,故选:D【题目点拨】本题考查三角函数的奇偶性和周期性的判定,考查正弦的二倍角公式的应用.9、A【解题分析】
求出函数的导数,解关于导函数的不等式,求出函数的极值点,再逐项判断即可.【题目详解】f'当f当f'故选:A【题目点拨】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.10、C【解题分析】
化简二项式展开式的通项公式,令的指数为零,根据为正整数,求得的最小值.【题目详解】,令,则,当时,有最小值为7.故选C.【题目点拨】本小题主要考查二项式展开式的通项公式,考查与正整数有关问题,属于基础题.11、A【解题分析】
全称命题的否定为特称命题,易得命题的否定为,.【题目详解】因为命题“,”为全称命题,所以命题的否定为特称命题,即,,故选A.【题目点拨】本题考查含有一个量词的命题的否定,注意“任意”要改成“存在”.12、C【解题分析】
根据题意可知,利用“1”的代换,将化为,展开再利用基本不等式,即可求解出答案。【题目详解】由题意知,,,且,则当且仅当时,等号成立,的最小值为9,故答案选C。【题目点拨】本题主要考查了利用基本不等式的性质求最值的问题,若不满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等。二、填空题:本题共4小题,每小题5分,共20分。13、0.65【解题分析】设红球不在红盒内且黄球不在黄盒内的概率为,再设红球在红盒内的概率为,黄球在黄盒内的概率为,红球在红盒内且黄球在黄盒内的概率为,则红球不在红盒且黄球不在黄盒由古典概型概率公式可得,,则,即,故答案为.14、【解题分析】分析:根据求导公式求出导数,再求出切线的斜率和切点的坐标,代入点斜式方程化为一般式即可.详解:由题意得,,在处的切线的斜率是,且切点坐标是,则在处的切线方程是:,即.故答案为:.点睛:1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应首先确定其是否为曲线的切点,进而选择相应的方法求解.15、【解题分析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.16、.【解题分析】
由得,再利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式计算出.【题目详解】,,因此,,故答案为.【题目点拨】本题考查复数的除法、复数模的计算,解题的关键就是利用复数的四则运算法则将复数表示为一般形式来求解,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为,单调递增区间为;(2)见解析.【解题分析】
(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【题目详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【题目点拨】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.18、(1)(2)见解析,【解题分析】
设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,可得,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,利用互斥事件与相互独立事件的概率计算公式即可得出.(2)的可能取值为0,1,2,3,4,,,,,,,,,,,,,,,利用互斥事件与相互独立事件的概率计算公式即可得出概率、分布列及其数学期望.【题目详解】解:设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件A表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则.(2)的可能取值为0,1,2,3,4,,∴的分布列为:01234所以【题目点拨】本题考查了用频率估计概率、随机变量的数学期望、二项分布列的性质、互斥事件与相互独立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.19、(Ⅰ)M=4;(Ⅱ)[1,+∞).【解题分析】分析:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max,进一步利用分离参数法,即可求得实数a的取值范围;详解:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M∵g(x)=x3﹣x2﹣3,∴∴g(x)在(0,)上单调递减,在(,2)上单调递增∴g(x)min=g()=﹣,g(x)max=g(2)=1∴g(x)max﹣g(x)min=∴满足的最大整数M为4;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max.由(I)知,在[,2]上,g(x)max=g(2)=1∴在[,2]上,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x2lnx恒成立记h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x且h′(1)=0∴当时,h′(x)>0;当1<x<2时,h′(x)<0∴函数h(x)在(,1)上单调递增,在(1,2)上单调递减,∴h(x)max=h(1)=1∴a≥1点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.20、(1)当时,解得,当时,解得;(2)见解析.【解题分析】分析:(1)先根据特征值的定义列出特征多项式,令解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)根据矩阵A的特征多项式求出矩阵A的所有特征值为3和-1,然后根据特征向量线性表示出向量,利用矩阵的乘法法则求出,从而即可求出答案.详解(1)矩阵的特征多项式为,令,解得,,当时,解得;当时,解得.(2)令,得,求得.所以点睛:考查学生会利用二阶矩阵的乘法法则进行运算,会求矩阵的特征值和特征向量.21、见解析【解题分析】
运用数学归纳法证明,考虑检验成立,再假设成立,证明时,注意变形,即可得证.【题目详解】证:①当时,,能被7整除;②假设时,能被7整除,那么当时,,由于能被7整除,能被7整除,可得能被7整除,即当时,能被7整除;综上可得当时,能被7整除.【题目点拨】本题主要考查数学归纳法,数学归纳法的基本形式:设是关于自然数的命题,若成立(奠基);假设成立,可以推出成立(归纳),则对一切大于等于的自然数都成立.属于基础题.22、(1)估计这批学生的平均年龄
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业环保投资回报分析与决策考核试卷
- 智慧城市的医疗健康实践考核试卷
- 派遣工人劳务合同模板
- 林木育种的花卉种质资源保护与利用考核试卷
- 湖景租房合同范例
- 灯管买卖合同模板
- 冷冻肉购销合同模板
- 湘莲加工合同范例
- 松江区气垫搬运合同范例
- 单位聘请兼职合同范例
- GB 29415-2013耐火电缆槽盒
- GB 15763.3-2009建筑用安全玻璃第3部分:夹层玻璃
- 2023年印花税法培训课件
- 重点初中英语教师经验交流发言稿
- 多旋翼无人机培训教材课件
- 一年级科学上册教案《做个小侦探》
- 汽车机械制图课件
- 未分配利润转增资本模版
- 2022年书法竞赛规则一
- osgearth的121个案例详解
- 送达地址确认书(诉讼类范本)
评论
0/150
提交评论