版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市临川区第二中学2024届数学高二下期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象如图,则与的关系是:()A. B.C. D.不能确定2.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为()A. B. C. D.3.用1,2,3,4,5,6这六个数字组成无重复数字的六位数,则5和6在两端,1和2相邻的六位数的个数是A.24 B.32 C.36 D.484.执行如图所示的程序框图,如果输入的,则输出的()A.5 B.6 C.7 D.85.已知随机变量服从正态分布,,则()A. B. C. D.6.如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为()A. B. C. D.7.设随机变量服从正态分布,,则()A. B. C. D.8.若为两条异面直线外的任意一点,则()A.过点有且仅有一条直线与都平行B.过点有且仅有一条直线与都垂直C.过点有且仅有一条直线与都相交D.过点有且仅有一条直线与都异面9.函数f(x)=lnxA. B. C. D.10.已知集合,集合,则()A. B.C. D.11.对于平面、、和直线、、、,下列命题中真命题是()A.若,则B.若,则C.若则D.若,则12.在中,,,,点满足,则等于()A.10 B.9 C.8 D.7二、填空题:本题共4小题,每小题5分,共20分。13.在一个如图所示的6个区域栽种观赏植物,要求同一块区域中种同一种植物,相邻的两块区域中种不同的植物.现有4种不同的植物可供选择,则不同的栽种方案的总数为____.14.如图所示,在三棱锥中,若,,是的中点,则下列命题中正确的是_______(填序号).①平面平面;②平面平面;③平面平面,且平面平面;④平面平面,且平面平面.15.的展开式中的系数是.(用数字填写答案)16.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).(1)全体排成一行,其中男生甲不在最左边;(2)全体排成一行,其中4名女生必须排在一起;(3)全体排成一行,3名男生两两不相邻.18.(12分)在平面直角坐标系中,直线:,以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.设直线与曲线交于,两点.(1)当时,求,两点的直角坐标;(2)当变化时,求线段中点的轨迹的极坐标方程.19.(12分)已知函数.(1)解不等式;(2)若的最小值为,正实数,满足,求的最小值.20.(12分)某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:统计信息汽车行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路公路(注:毛利润销售商支付给水产养殖基地的费用运费)(Ⅰ)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望.(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?21.(12分)已知双曲线的右焦点是抛物线的焦点,直线与该抛物线相交于、两个不同的点,点是的中点,求(为坐标原点)的面积.22.(10分)在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与曲线相切.(1)求曲线的极坐标方程;(2)在曲线上任取两点,,该两点与原点构成,且满足,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
通过导数的几何意义结合图像即得答案.【题目详解】由于导数表示的几何意义是切线斜率,而由图可知,在A处的切线倾斜角小于在B处切线倾斜角,且都在第二象限,故,答案为B.【题目点拨】本题主要考查导数的几何意义,比较基础.2、A【解题分析】
记事件甲获得冠军,事件比赛进行三局,计算出事件的概率和事件的概率,然后由条件概率公式可得所求事件的概率为.【题目详解】记事件甲获得冠军,事件比赛进行三局,事件甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,由独立事件的概率乘法公式得,对于事件,甲获得冠军,包含两种情况:前两局甲胜和事件,,,故选A.【题目点拨】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题.3、A【解题分析】
特殊元素优先排,相邻元素捆绑排,然后再分析剩余元素的排列.【题目详解】先排,方法有:种;将捆绑在一起,方法有:种;将这个整体和以及全排列,方法有:种,所以六位数的个数为:个,故选:A.【题目点拨】本题考查排列组合的简单应用,难度一般.在排列组合的过程中,一般我们要注意:特殊元素优先排,相邻元素捆绑排这样一个原则.4、A【解题分析】,故输出.5、A【解题分析】由正态分布的特征得=,选A.6、B【解题分析】
根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.【题目详解】根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与围成,其面积为,则正方形OABC中任取一点P,点P取自阴影部分的概率为;故选:B.【题目点拨】本题考查定积分在求面积中的应用,几何概型求概率,属于综合题,难度不大,属于简单题.7、D【解题分析】分析:由题可知,正态曲线关于对称,根据,即可求出详解:随机变量服从正态分布正态曲线关于对称故选D.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,本题解题的关键是正态曲线的对称性.8、B【解题分析】解:因为若点是两条异面直线外的任意一点,则过点有且仅有一条直线与都垂直,选B9、A【解题分析】
利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【题目详解】函数为非奇非偶函数,排除选项B,D;当-1<x<0,f(x)<0,排除选项C故选:A.【题目点拨】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.10、C【解题分析】
根据对数函数的定义域,化简集合集合,再利用交集的定义求解即可.【题目详解】因为集合,集合,所以由交集的定义可得,故选C.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.11、C【解题分析】
若由线面垂直的判定定理知,只有当和为相交线时,才有
错误;
若此时由线面平行的判定定理可知,只有当在平面
外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若,,,则为真命题,正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有错误.
故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.12、D【解题分析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【题目点拨】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先种B、E两块,再种A、D,而种C、F与种A、D情况一样,根据分类与分步计数原理可求.【题目详解】先种B、E两块,共种方法,再种A、D,分A、E相同与不同,共种方法,同理种C、F共有7种方法,总共方法数为【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.本题先种B、E两块,让问题变得更简单.14、③【解题分析】
由AB=BC,AD=CD,说明对棱垂直,推出平面ABC⊥平面BDE,且平面ADC⊥平面BDE,即可得出结论.【题目详解】因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,故答案为:③.【题目点拨】本题考查了平面与平面垂直的判定,考查学生分析解决问题的能力,属于基础题.15、【解题分析】由题意,二项式展开的通项,令,得,则的系数是.考点:1.二项式定理的展开式应用.16、【解题分析】分析:令y′≥1在(1,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的范围.详解:y′=+2ax,x∈(1,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥1在(1,+∞)上恒成立,∴a≥﹣恒成立,x∈(1,+∞).令f(x)=﹣,x∈(1,+∞),则f(x)在(1,+∞)上单调递增,又f(x)=﹣<1,∴a≥1.故答案为:.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)全体排在一行,其中男生甲不在最左边的方法总数为4320种;(2)全体排成一行,其中4名女生必须排在一起的方法总数为576种;(3)全体排成一行,3名男生两两不相邻的方法总数为1440种;【解题分析】
(1)特殊位置用优先法,先排最左边,再排余下位置。(2)相邻问题用捆绑法,将女生看成一个整体,进行全排列,再与其他元素进行全排列。(3)不相邻问题用插空法,先排好女生,然后将男生插入其中的五个空位。【题目详解】(1)先排最左边,除去甲外有种,余下的6个位置全排有种,则符合条件的排法共有种.(2)将女生看成一个整体,进行全排列,再与其他元素进行全排列,共有576种;(3)先排好女生,然后将男生插入其中的五个空位,共有种.答:(1)全体排在一行,其中男生甲不在最左边的方法总数为4320种;(2)全体排成一行,其中4名女生必须排在一起的方法总数为576种;(3)全体排成一行,3名男生两两不相邻的方法总数为1440种.【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.常用的方法技巧有,有特殊元素或特殊位置,对于特殊元素或位置“优先法”,对于不相邻问题,采用“插空法”。对于相邻问题,采用“捆绑法”,对于正面做比较困难时,常采用“间接法”。18、(1);(2).【解题分析】
(1)根据,将曲线的极坐标方程化为直角坐标方程,与直线方程联立,即可求解(2)设,根据已知可得在曲线上,即可求解.【题目详解】(1)由得,,联立,消去得,,解得,或,当时,,当时,,,两点的直角坐标分别为;(2)直线与曲线有一交点为极点,不妨为,设,则在曲线上,所以,即,因为不重合,所以所以线段中点的轨迹的极坐标方程【题目点拨】本题考查直线与圆的位置关系、轨迹方程,意在考查逻辑推理、数学计算能力,属于基础题.19、(1);(2)9【解题分析】
(1)可采用零点讨论法先求出零点,,再将x分为三段,,,分别进行讨论求解(2)采用绝对值不等连式特点求出最小值,再采用均值不等式进行求解即可【题目详解】解:(1)①当时,,解得;②当时,,恒成立;③当时,,解得;综上所述,该不等式的解集为.(2)根据不等连式,所以,,,当且仅当时取等号.故最小值为9.【题目点拨】绝对值不等式的解法常采用零点讨论法,分区间讨论时,一定要注意零点处取不取得到的问题,如本题中将x分为三段,,;绝对值不等连式为:,应熟悉均值不等式常见的基本形式,知道基本形式都源于20、(Ⅰ)见解析,万元;(Ⅱ)走公路可让水产养殖基地获得更多利润.【解题分析】试题分析:(Ⅰ)根据题意得到不堵车时万元,堵车时万元,结合题目中给出的概率得到随机变量的分布列,求得万元。(Ⅱ)设设走公路利润为,同(Ⅰ)中的方法可得到随机变量的分布列,求得万元,故应选择走公路可让水产养殖基地获得更多利润。试题解析:(I)由题意知,不堵车时万元,堵车时万元。∴随机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度云南省昆明市房产买卖合同3篇
- 2024年版个人汽车租赁给公司协议
- 2024年度水平井固井工程合同转让合同合法合规转让合同权益2篇
- 2024年度随车吊质量保证协议3篇
- 2024年度艺人经纪合同及分成比例协议3篇
- 小数除以小数课程设计
- 2024版办公楼施工环境保护责任书3篇
- 2024年建筑工程施工合同工期延误免责及协调管理协议3篇
- 2024版中国电信行业企业间数据共享与保护协议3篇
- 2024年新能源汽车动力电池技术研发合同
- 同等学力申硕-同等学力(社会学)笔试(2018-2023年)真题摘选含答案
- 疾病健康宣教的课件
- 部队心肺复苏
- 2024年人工智能在教育领域的革新与影响
- (全文版)养老院舆情危机处理策略和框架
- 计算机科学与人工智能教材
- 内河港口行业分析
- 新公共管理理论述评
- 家政学概论理论考核试题及答案
- 内部招投标合同履约考核指标
- 自动化生产线安装与调试(岗课赛证一体化教程)课件 项目5 旋转工作单元的安装与调试
评论
0/150
提交评论