陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第1页
陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第2页
陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第3页
陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第4页
陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省渭南市蒲城县2024届高二数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致是A. B. C. D.2.已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a的值为()ξ4a9P0.50.1bA.5 B.6 C.7 D.83.如图,已知直线与曲线相切于两点,函数,则函数()A.有极小值,没有极大值 B.有极大值,没有极小值C.至少有两个极小值和一个极大值 D.至少有一个极小值和两个极大值4.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.5.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是()A. B. C. D.6.若函数在其定义域内的一个子区间上不是单调函数,则实数的取值范围是()A. B. C. D.7.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是A.B.C.D.8.从区间上任意选取一个实数,则双曲线的离心率大于的概率为()A. B. C. D.9.的展开式中有理项系数之和为()A. B. C. D.10.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为().A. B. C. D.11.某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()A.1 B.2 C.3 D.412.如图,矩形的四个顶点依次为,,记线段、以及的图象围成的区域(图中阴影部分)为,若向矩形内任意投一点,则点落在区域内的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,项的系数为_____(结果用数值表示).14.若复数()为纯虚数,则____.15.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2]时,f(x)=log2(x+1),则f(﹣2013)+f(2015)=_____.16.已知函数在上是减函数,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,,以AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成角的大小;(3)求点N到平面ACM的距离.18.(12分)现有男选手名,女选手名,其中男女队长各名.选派人外出比赛,在下列情形中各有多少种选派方法?(结果用数字表示)(1)男选手名,女选手名;(2)至少有名男选手;(3)既要有队长,又要有男选手.19.(12分)(1)设是两个正实数,且,求证:;(2)已知是互不相等的非零实数,求证:三个方程,,中至少有一个方程有两个相异实根.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.(1)求证:AD⊥PB;(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.21.(12分)已知函数.(Ⅰ)当时,求函数在处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)求证:当时,函数的图像与函数的图像在区间上没有交点.22.(10分)已知抛物线,过焦点作斜率为的直线交抛物线于两点.(1)若,求;(2)过焦点再作斜率为的直线交抛物线于两点,且分别是线段的中点,若,证明:直线过定点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用函数的奇偶性、特殊值判断函数图象形状与位置即可.【题目详解】函数y=是奇函数,所以选项A,B不正确;当x=10时,y=>0,图象的对应点在第一象限,D正确;C错误.故选D.【题目点拨】本题考查函数的图象的判断,一般利用函数的定义域、值域、奇偶性、单调性、对称性、特殊值等方法判断.2、C【解题分析】分析:先根据分布列概率和为1得到b的值,再根据E(X)=6.3得到a的值.详解:根据分布列的性质得0.5+0.1+b=1,所以b=0.4.因为E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3,所以a=7.故答案为C.点睛:(1)本题主要考查分布列的性质和随机变量的期望的计算,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①,;②.3、C【解题分析】

根据导数的几何意义,讨论直线与曲线在切点两侧的导数与的大小关系,从而得出的单调区间,结合极值的定义,即可得出结论.【题目详解】如图,由图像可知,直线与曲线切于a,b,将直线向下平移到与曲线相切,设切点为c,当时,单调递增,所以有且.对于=,有,所以在时单调递减;当时,单调递减,所以有且.有,所以在时单调递增;所以是的极小值点.同样的方法可以得到是的极小值点,是的极大值点.故选C.【题目点拨】本题主要考查函数导数的几何意义,函数导数与单调性,与函数极值之间的关系,属于中档题.4、D【解题分析】

根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【题目详解】,令,方程有两个不等正根,,则:故选:D【题目点拨】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.5、A【解题分析】

解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m.∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.6、B【解题分析】分析:求出导函数,求得极值点,函数在含有极值点的区间内不单调.详解:,此函数在上是增函数,又,因此是的极值点,它在含有的区间内不单调,此区间为B.故选B.点睛:本题考查用导数研究函数的极值,函数在不含极值点的区间内一定是单调函数,因此此只要求出极值点,含有极值点的区间就是正确的选项.7、B【解题分析】试题分析:如图,几何体是四棱锥,一个侧面PBC⊥底面ABCD,底面ABCD是正方形,且边长为20,那么利用体积公式可知,故选B.考点:本题主要考查三视图、椎体的体积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.点评:解决该试题的关键是由三视图可知,几何体是四棱锥,一个侧面垂直底面,底面是正方形,根据数据计算其体积.8、D【解题分析】分析:求出m的取值范围,利用几何概型的计算公式即可得出.详解:由题意得,,解得,即.故选:D.点睛:几何概型有两个特点:一是无限性;二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.9、B【解题分析】分析:在二项展开式的通项公式中,令x的幂指数为整数,求出r的值,再利用二项式系数的性质,即可求得展开式中有理项系数之和.详解:(1+)6的展开式的通项公式为Tr+1=•,令为整数,可得r=0,2,4,6,故展开式中有理项系数之和为+++=25=32,故选:B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数10、B【解题分析】

结合图表,通过计算可得:该学期的电费开支占总开支的百分比为×20%=11.25%,得解.【题目详解】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选B.【题目点拨】本题考查了识图能力及进行简单的合情推理,属简单题.11、A【解题分析】

由题意知X~B(4,),根据二项分布的方差公式进行求解即可.【题目详解】∵每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,∴X~B(4,),则X的方差D(X)=4(1)=1,故选A.【题目点拨】本题主要考查离散型随机变量的方差的计算,根据题意得到X~B(4,)是解决本题的关键.12、D【解题分析】分析:利用定积分的几何意义求出阴影部分的面积,由几何概型的概率公式,即可得结果.详解:阴影部分的面积是,矩形的面积是,点落在区域内的概率,故选D.点睛:本题主要考查定积分的几何意义以及几何概型概率公式,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线以及直线之间的曲边梯形面积的代数和,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

通过二项展开式的通项公式求出展开式的通项,利用的指数为2,求出展开式中的系数.【题目详解】解:展开式的通项为.令得到展开式中的系数是.故答案为:1.【题目点拨】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.14、0【解题分析】试题分析:由题意得,复数为纯虚数,则,解得或,当时,(舍去),所以.考点:复数的概念.15、0【解题分析】当x≥0,都有f(x+2)=﹣,∴此时f(x+4)=f(x),∴f(2015)=f(503×4+3)=f(3)=﹣,∵当x∈[0,2]时,f(x)=log2(x+1),∴f(1)=log2(1+1)=1,即f(2015)=﹣=﹣1,∵函数f(x)是定义在R上的偶函数,∴f(﹣2013)=f(503×4+1)=f(1)=1,∴f(﹣2013)+f(2015)=1﹣1=0,故答案为016、【解题分析】

在上是减函数的等价条件是在恒成立,然后分离参数求最值即可.【题目详解】在上是减函数,在恒成立,即,在的最小值为,【题目点拨】本题主要考查利用导函数研究含参函数的单调性问题,把在上是减函数转化为在恒成立是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2).(3).【解题分析】分析:(Ⅰ)要证平面ABM⊥平面PCD,只需证明平面PCD内的直线PD,垂直平面PAD内的两条相交直线BM、AB即可;(Ⅱ)先根据体积相等求出D到平面ACM的距离为h,即可求直线PC与平面ABM所成的角;(Ⅲ)先根据条件分析出所求距离等于点P到平面ACM距离的,设点P到平面ACM距离为h,再利用第二问的结论即可得到答案.详解:(1)AC是所作球面的直径,AM⊥MC,PA⊥平面ABCD,则PA⊥CD,又CD⊥AD,∴CD⊥平面PAD,则CD⊥AM,∴AM⊥平面PCD,∴平面ABM⊥平面PCD;(2),,,设D到平面ACM的距离为h,由,求得,∴,;(3),,∴,∴,所求距离.点睛:这个题目考查了空间中的直线和平面的位置关系,求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.18、(1)30;(2)65;(3)51.【解题分析】

(1)先选两名男选手,再选两名女选手,乘法原理得到答案.(2)用总的选择方法减去全是女选手的方法得到答案.(3)分为有男队长和没有男队长两种情况,相加得到答案.【题目详解】(1)第一步:选名男运动员,有种选法.第二步:选名女运动员,有种选法.共有(种)选法.(2)至少有名男选手”的反面为“全是女选手”.从人中任选人,有种选法,其中全是女选手的选法有种.所以“至少有名女运动员”的选法有(种).(3)当有男队长时,其他人选法任意,共有种选法.不选男队长时,必选女队长,共有种选法,其中不含男选手的选法有种,所以不选男队长时,共有种选法.故既要有队长,又要有男选手的选法有(种).【题目点拨】本题考查了排列组合问题的计算,意在考查学生的计算能力和解决问题的能力.19、(1)见解析;(2)见解析【解题分析】

(1)先证明,再在两边同时乘以正数(a+b),不等式即得证;(2)利用反证法证明即可.【题目详解】(1)证明:∵,∴,∴,∴,而均为正数,∴,∴,∴成立.(2)证明:假设三个方程中都没有两个相异实根,则,,.相加有,.①则,与由题意、、互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.【题目点拨】本题主要考查不等式的证明,考查反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)见解析;(2)【解题分析】

(1)取中点,连接,根据等边三角形的性质证得平面,由此证得.(2)以分别为轴建立空间直角坐标系,通过计算平面和平面的法向量,计算出二面角的余弦值.【题目详解】(1)取中点,连接,由条件知均为等边三角形,因此,而由线面垂直定理可证,又即证(2)由(1)知,从而;以建立空间直角坐标系,如图所示:设,则,,,,,设面的法向量为则可得;设面的法向量为则可得由图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论