湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题含解析_第1页
湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题含解析_第2页
湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题含解析_第3页
湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题含解析_第4页
湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市钢城四中2024届数学高二下期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(,则()A. B. C. D.大小关系不能确定2.设,均为实数,且,,,则()A. B. C. D.3.若X是离散型随机变量,P(X=x1)=23,P(X=x2)=1A.53 B.73 C.34.从某大学中随机选取8名女大学生,其身高(单位:)与体重(单位:)数据如下表:1651651571701751651551704857505464614359若已知与的线性回归方程为,那么选取的女大学生身高为时,相应的残差为()A. B.0.96 C.63.04 D.5.在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.6.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有()A.140种 B.84种 C.70种 D.35种7.“”是“复数在复平面内对应的点在第一象限”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知为虚数单位,则复数对应复平面上的点在第()象限.A.一 B.二 C.三 D.四9.图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是()A.14 B.C.34 D.10.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.乙B.甲C.丁D.丙11.从标有1、2、3、4、5的五张卡片中,依次不放回地抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A. B. C. D.12.“”是“圆:与圆:外切”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分条件也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________.14.五名旅客在三家旅店投宿的不同方法有______种.15.甲、乙、丙射击命中目标的概率分别为、、,现在三人同时射击目标,且相互不影响,则目标被击中的概率为__________.16.有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是月日,张老师把告诉了甲,把告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求函数的单调增区间;(2)若≤对任意的恒成立,求的取值范围.18.(12分)已知函数,.(Ⅰ)若是函数的一个极值点,求实数的值及在内的最小值;(Ⅱ)当时,求证:函数存在唯一的极小值点,且.19.(12分)已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.20.(12分)如图,直角梯形中,,,,,底面,底面且有.(1)求证:;(2)若线段的中点为,求直线与平面所成角的正弦值.21.(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.(Ⅰ)若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;(Ⅱ)求矩阵的特征值与特征向量.22.(10分)已知抛物线的焦点与椭圆的右焦点重合.(1)求抛物线的方程及焦点到准线的距离;(2)若直线与交于、两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

对函数求导得到函数的导函数,进而得到原函数的单调性,从而得到结果.【题目详解】函数(,对函数求导得到当x>1时,导函数大于0,函数单调增,当x<1时,导函数小于0,函数单调递减,因为,故得到.故答案为C.【题目点拨】这个题目考查了导函数对于研究函数单调性的应用,函数的单调性可以通过常见函数的性质得到,也可以通过定义法证明得到函数的单调性,或者通过求导得到函数的单调性.2、B【解题分析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.3、C【解题分析】

本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【题目详解】∵E(X)=∴2∴x1=1x∴x故选C.考点:离散型随机变量的期望方差.4、B【解题分析】

将175代入线性回归方程计算理论值,实际数值减去理论数值得到答案.【题目详解】已知与的线性回归方程为当时:相应的残差为:故答案选B【题目点拨】本题考查了残差的计算,意在考查学生的计算能力.5、C【解题分析】

由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【题目详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为.故选:C.【题目点拨】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、C【解题分析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数.详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有种;快译通1台和录音机2台,取法有种,根据分类计数原理知共有种.故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.7、C【解题分析】

根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【题目详解】若复数在复平面内对应的点在第一象限,则解得,故“”是“复数在复平面内对应的点在第一象限”的充要条件.故选C.【题目点拨】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.8、D【解题分析】分析:首先化简所给的复数,然后确定复数所在的象限即可.详解:由题意可得:,则复数对应的点为,该点位于第四象限,即复数对应复平面上的点在第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.9、C【解题分析】分析:将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,再根据概率公式求解可得.详解:由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是34故选:C.点睛:本题考查了概率公式和展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形,注意:只要有“田”字格的展开图都不是正方体的表面展开图.10、A【解题分析】

由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【题目详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【题目点拨】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.11、B【解题分析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则,,所以.故选B.12、B【解题分析】

由圆:与圆:外切可得,圆心到圆心的距离是求出的值,然后判断两个命题之间的关系。【题目详解】由圆:与圆:外切可得,圆心到圆心的距离是即可得所以“”是“圆:与圆:外切”的充分不必要条件。【题目点拨】本题考查了两个圆的位置关系及两个命题之间的关系,考查计算能力,转化思想。属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、0.5【解题分析】分析:利用条件概率求解.详解:设第一道工序出废品为事件则,第二道工序出废品为事件,则根据题意可得,故在第一道工序出废品的条件下,第二道工序又出废品的概率即答案为0.5点睛:本题考查条件概率的求法,属基础题.14、【解题分析】

每名旅客都有种选择,根据分步乘法计数原理可得出五名旅客投宿的方法种数.【题目详解】由于每名旅客都有种选择,因此,五名旅客在三家旅店投宿的不同方法有种.故答案为:.【题目点拨】本题考查分步乘法计数原理的应用,考查计算能力,属于基础题.15、【解题分析】分析:根据相互独立事件的概率乘法公式,目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,运算求得结果.详解:目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,故目标被击中的概率是.故答案为.点睛:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系.16、3月2日【解题分析】

甲说“我不知道,但你一定也不知道”,可排除五个日期,乙听了甲的话后,说“本来我不知道,但现在我知道了”,再排除2个日期,由此能求出结果.【题目详解】甲只知道生日的月份,而给出的每个月都有两个以上的日期,所以甲说“我不知道”,根据甲说“我不知道,但你一定也不知道”,而5月、7月中8日6日是唯一的,所以5月、7月不正确,乙听了甲的话后,说“本来我不知道,但现在我知道了”,而剩余的5个日期中乙能确定生日,说明一定不是7日,甲接着说,“哦,现在我也知道了”,可排除2月5日2月9日,现在可以得知张老师生日为3月2日.【题目点拨】本题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,正确解题的关键是读懂题意,能够根据叙述合理运用排除法进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用二倍角公式和辅助角公式将整理为,将整体对应的单调增区间,求出的范围即可;(2)将问题转化为,通过还原将问题转化为,;根据单调性求得,从而得到结果.【题目详解】(1)由得:单调增区间为:(2)由得:当时,令,则,又在单调递增【题目点拨】本题考查的单调区间的求解、与三角函数有关的恒成立问题.解决恒成立问题的关键是通过分离变量的方式将问题转化为变量与函数最值之间的关系,需要注意的是自变量的取值范围.18、(Ⅰ);(Ⅱ)见解析【解题分析】

(Ⅰ)由已知条件的导函数,以及,从而求出实数的值,利用导数求出函数在内的单调性,从而得到在内的最小值(Ⅱ)由题可得,令,要证函数存在唯一的极小值点,即证只有唯一根,利用导数求出的单调区间与值域即可,且由零点定理可知,由,可得,代入中,利用导数求出在内的最值即可证明。【题目详解】(Ⅰ)由题可得:,则,是函数的一个极值点,,即,解得:,经检验,当时,是函数的一个极值点;;当时,,令,解得:或,当时,、的变化如下表:所以当时,有最小值,(Ⅱ)当时,,令,,则,由于恒成立,所以恒大于零,则在上单调递增,由于,,根据零点定理,可得存在唯一的,使得,令,解得:,,当或时,,即的单调增区间为,,当时,,即的单调减区间为,函数存在唯一的极小值点,且,,则;,则,令,解得:或,当时,,则在上单调递减,则,,所以【题目点拨】本题考查导数在函数最值以及极值中的运用,考查学生转化的思想,综合性较强,有一定难度。19、(Ⅰ)增区间为(1,),(-),减区间为(-1,1);(Ⅱ)最小值为,最大值为【解题分析】试题分析:(Ⅰ)首先求函数的导数,然后解和的解集;(Ⅱ)根据上一问的单调区间,确定函数的端点值域极值,其中最大值就是函数的最大值,最小的就是函数的最小值.试题解析:(Ⅰ)根据题意,由于因为>0,得到x>1,x<-1,故可知在上是增函数,在上是增函数,而则,故在上是减函数(Ⅱ)当时,在区间取到最小值为.当时,在区间取到最大值为.考点:导数的基本运用20、(1)证明见解析;(2).【解题分析】试题分析:(1)根据线段长度的关系得到,,、是平面内的相交直线,平面,进而得到线线垂直;(2)常用的方法是建系,建立空间坐标系,求得直线的方向向量和面的法向量,根据向量的夹角公式得到线面角.解析:(1),,且是等腰直角三角形,平面中,,,可得,即底面,底面,、是平面内的相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论