浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题含解析_第1页
浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题含解析_第2页
浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题含解析_第3页
浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题含解析_第4页
浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市浙大附中2024届数学高二第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间中可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则为()A. B. C. D.3.将函数图象上所有的点向左平移个单位,再将横坐标伸长为原来的2倍(纵坐标不变),得到的图象,则下列各式正确的是()A. B.C. D.4.设圆x2+y2+2x-2=0截x轴和y轴所得的弦分别为AB和CDA.22 B.23 C.25.展开式中常数项为()A. B. C. D.6.已知则的最小值是()A. B.4 C. D.57.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.2798.若对于任意的实数,有,则的值为()A. B. C. D.9.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%10.外接圆的半径等于1,其圆心O满足,则向量在方向上的投影等于()A. B. C. D.311.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为.将此结论类比到空间四面体:设四面体的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=()A. B.C. D.12.函数在处的切线斜率为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程有两个根、,且,则的值为______.14.设满足约束条件,则的最大值为.15.已知复数满足,则的最小值为___________.16.已知函数,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,其中是虚数单位,根据下列条件分别求实数的值.(Ⅰ)复数是纯虚数;(Ⅱ)复数在复平面内对应的点在直线上.18.(12分)已知函数.(1)求此函数的单调区间;(2)设.是否存在直线()与函数的图象相切?若存在,请求出的值,若不存在,请说明理由.19.(12分)如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上.并记组成该“钉”的四条等长的线段公共点为,钉尖为.(1)判断四面体的形状,并说明理由;(2)设,当在同一水平面内时,求与平面所成角的大小(结果用反三角函数值表示);(3)若该“钉”着地后的四个线段根据需要可以调节与底面成角的大小,且保持三个线段与底面成角相同,若,,问为何值时,的体积最大,并求出最大值.20.(12分)已知函数,.(Ⅰ)当时,证明:;(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.21.(12分)选修4-5:不等式选讲.(1)当时,求函数的最大值;(2)若对任意恒成立,求实数的取值范围.22.(10分)某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为相.(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为.求的值:(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为元和元,若从两条生产线上各随机抽检件产品。估计哪条生产线的损失较多?(3)若产品按照一、二、三等级分类后销售,每件可分别获利元,元,元,现从甲、乙生产线各随机抽取件进行检测,统计结果如图所示。用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量为件时利润的期望值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】,,,∴“”是“”的充分不必要条件.故选:.2、B【解题分析】

平面图形类比空间图形,二维类比三维,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.【题目详解】设正四面体P-ABC的边长为a,设E为三角形ABC的中心,H为正四面体P-ABC的中心,则HE为正四面体P-ABC的内切球的半径r,BH=PH且为正四面体P-ABC的外接球的半径R,所以BE=,所以在中,,解得,所以R=PE-HE=,所以,根据的球的体积公式有,,故选:B.【题目点拨】本题考查类比推理,常见类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.3、C【解题分析】

根据平移得到,函数关于点中心对称,得到答案.【题目详解】根据题意:,故,取,故.故函数关于点中心对称,由,则故,则正确,其他选项不正确.故选:.【题目点拨】本题考查了三角函数平移,中心对称,意在考查学生对于三角函数知识的综合应用.4、C【解题分析】

先求出|AB|,|CD|,再求四边形ABCD的面积.【题目详解】x2+y令y=0得x=±3-1,则令x=0得y=±2,所以|CD|=2四边形ACBD的面积S=故答案为:C【题目点拨】本题主要考查直线和圆的位置关系,考查弦长的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解题分析】

求出展开式的通项公式,然后进行化简,最后让的指数为零,最后求出常数项.【题目详解】解:,令得展开式中常数项为,故选D.【题目点拨】本题考查了求二项式展开式中常数项问题,运用二项式展开式的通项公式是解题的关键.6、C【解题分析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【题目详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7、B【解题分析】由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=1.8、B【解题分析】试题分析:因为,所以,故选择B.考点:二项式定理.9、B【解题分析】试题分析:由题意故选B.考点:正态分布10、C【解题分析】分析:先根据题意画出图形,由已知条件可知三角形为直角三角形,且,再根据直角三角形射影定理可求得所求投影的值.详解:根据题意画出图像如下图所示,因为,所以为中点,所以是圆的直径,所以.由于,所以三角形为等边三角形,所以,根据直角三角形射影定理得,即.故选C.点睛:本小题主要考查圆的几何性质,考查向量加法的几何意义,考查直角三角形射影定理等知识.属于中档题.11、C【解题分析】

由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【题目详解】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:,所以.故选:C【题目点拨】本题主要考查了类比推理的应用,属于中档题.12、B【解题分析】

先对函数求导,然后代入切点的横坐标,即可求得本题答案.【题目详解】由,得,所以切线斜率.故选:B【题目点拨】本题主要考查在曲线上一点的切线斜率,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、或1【解题分析】

对方程的两根分成实根和虚根两种情况讨论,再利用韦达定理和求根公式分别求解.【题目详解】当△时,,;当△时,,故答案为:或1.【题目点拨】此题考查实系数二次方程根的求解,考查分类讨论思想的运用,求解的关键在于对判别式分大于0和小于0两种情况.14、5.【解题分析】.试题分析:约束条件的可行域如图△ABC所示.当目标函数过点A(1,1)时,z取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.15、4【解题分析】

根据复数模的几何意义,将条件转化为距离问题即可得到答案【题目详解】设,由得所以即点是圆心为,半径为1的圆上的动点,表示的是点与点的距离所以其最小值为点到圆心的距离减去半径即故答案为:4【题目点拨】本题考查的是复数模的几何意义,圆当中的最值问题一般向圆心进行转化.16、【解题分析】,,解得,故,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解题分析】

(Ⅰ)根据纯虚数为实部为0,虚部不为0即可得到方程,于是求得答案;(Ⅱ)将复数在复平面内对应的点表示出来,代入直线上,即可得到答案.【题目详解】解:因为,复数可表示为,(Ⅰ)因为为纯虚数,所以解得;(Ⅱ)复数在复平面内对应的点坐标为因为复数在复平面内对应的点在直线上所以即解得或.【题目点拨】本题主要考查纯虚数,复数的几何意义等相关概念,难度较小.18、(1)单调递增区间是,单调递减区间是和(2)存在,的值是.【解题分析】

(1)求导数,利用导数的正负,即可求此函数的单调区间;(2)假设存直线与函数的图象相切于点,则这条直线可以写成,与直线比较,即可得出结论.【题目详解】解:(1)∵,∴.令,得,解之,得;令,得,解之,得,或.∴函数的单调递增区间是,单调递减区间是和.(2)∵,,∴.∴.假设存直线与函数的图象相切于点(),则这条直线可以写成.∵,,∴.即.∴解之,得所以存在直线与函数的图象相切,的值是.【题目点拨】本题考查导数知识的综合运用,考查函数的单调性,考查导数的几何意义,考查学生分析解决问题的能力,属于中档题.19、(1)正四面体;理由见解析(2);(3)当时,最大体积为:;【解题分析】

(1)根据线段等长首先确定为四面体外接球球心;又底面,可知为正三棱锥;依次以为顶点均有正三棱锥结论出现,可知四面体棱长均相等,可知其为正四面体;(2)由为四面体外接球球心及底面可得到即为所求角;设正四面体棱长为,利用表示出各边,利用勾股定理构造方程可求得,从而可求得,进而得到结果;(3)取中点,利用三线合一性质可知,从而可用表示出底面边长和三棱锥的高,根据三棱锥体积公式可将体积表示为关于的函数,利用导数求得函数的最大值,并确定此时的取值,从而得到结果.【题目详解】(1)四面体为正四面体,理由如下:四条线段等长,即到四面体四个顶点距离相等为四面体外接球的球心又底面在底面的射影为的外心四面体为正三棱锥,即,又任意抛至水平面后,总有一端所在的直线竖直向上,若竖直向上可得:可知四面体各条棱长均相等为正四面体(2)由(1)知,四面体为正四面体,且为其外接球球心设中心为,则平面,如下图所示:即为与平面所成角设正四面体棱长为则,在中,,解得:即与平面所成角为:(3)取中点,连接,,为中点且,令,,则设,,则令,解得:,当时,;当时,当时,取极大值,即为最大值:即当时,取得最大值,最大值为:此时,即综上所述,当时,体积最大,最大值为:【题目点拨】本题考查立体几何中的几何体特征判断、直线与平面所成角的求解、三棱锥体积的最值的求解问题;求解三棱锥体积的最值问题,关键是要把底面面积和三棱锥的高均利用某一变量来进行表示,从而将所求体积最值问题转化为关于此变量的函数最值问题的求解,进而通过导数或其他求解函数最值的方法求得结果.20、(Ⅰ)见解析(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2条,证明见解析【解题分析】

(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,设l(x)=f(x)﹣x=ex﹣x,分别求得导数和单调性、最值,即可得证;(Ⅱ)先确定曲线y=f(x),y=g(x)公切线的条数,设出切点坐标并求出两个函数导数,根据导数的几何意义列出方程组,先化简方程得lnm﹣1.分别作出y=lnx﹣1和y的函数图象,通过图象的交点个数来判断方程的解的个数,即可得到所求结论.【题目详解】(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,h′(x)1,当x>1时,h′(x)<0,h(x)递减;0<x<1时,h′(x)>0,h(x)递增;可得h(x)在x=1处取得最大值﹣1,可得h(x)≤﹣1<0;设l(x)=f(x)﹣x=ex﹣x,l′(x)=ex﹣1,当x>0时,l′(x)>0,l(x)递增;可得l(x)>l(0)=1>0,综上可得当x>0时,g(x)<x<f(x);(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与g(x)=lnx,f(x)=ex的切点分别为(m,lnm),(n,en),m≠n,∵g′(x),f′(x)=ex,可得,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm,由lnx1,即lnx﹣1.分别作出y=lnx﹣1和y的函数图象,由图象可知:y=lnx﹣1和y的函数图象有两个交点,可得方程lnm有两个实根,则曲线y=f(x),y=g(x)公切线的条数是2条.【题目点拨】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查方程与构造函数法和数形结合思想,考查化简运算能力,属于较难题.21、(1)4(2)【解题分析】分析:(1)利用绝对值三角不等式求函数的最大值.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论