吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题含解析_第1页
吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题含解析_第2页
吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题含解析_第3页
吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题含解析_第4页
吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市九台示范高级中学2024届数学高二第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在“一带一路”的知识测试后甲、乙、丙三人对成绩进行预测.甲:我的成绩最高.乙:我的成绩比丙的成绩高丙:我的成绩不会最差成绩公布后,三人的成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序可能为()A.甲、丙、乙 B.乙、丙、甲C.甲、乙、丙 D.丙、甲、乙2.已知双曲线的一条渐近线与轴所形成的锐角为,则双曲线的离心率为()A. B. C.2 D.或23.函数f(x)=x3+ax2A.-3或3 B.3或-9 C.3 D.-34.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.35.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.6.函数的大致图象是()A. B.C. D.7.“b2=ac”是“a,b,c成等比数列”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知函数与的图象如图所示,则函数()A.在区间上是减函数 B.在区间上是减函数C.在区间上减函数 D.在区间上是减函数9.若,满足条件,则的最小值为()A. B. C. D.10.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则()A. B. C. D.11.以下四个命题中,真命题的是()A.B.“对任意的”的否定是“存在”C.,函数都不是偶函数D.中,“”是“”的充要条件12.当生物死亡后,其体内原有的碳的含量大约每经过年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的,则该生物生存的年代距今约()A.万年 B.万年 C.万年 D.万年二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,且,则______.14.若,且,那么__________.15.已知向量满足:,,当取最大值时,______.16.若某一射手射击所得环数的分布列如下:456789100.020.040.060.090.280.290.22则此射手“射击一次命中环数”的概率是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为.(1)若,解不等式;(2)若,求证:.18.(12分)已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.19.(12分)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?20.(12分)已知,,分别为三个内角,,的对边,且.(1)求角的大小;(2)若且的面积为,求的值.21.(12分)复数,若是实数,求实数的值.22.(10分)在平面直角坐标系中,已知椭圆的焦距为4,且过点.(1)求椭圆的方程(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于、两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

假设一个人预测正确,然后去推导其他两个人的真假,看是否符合题意.【题目详解】若甲正确,则乙丙错,乙比丙成绩低,丙成绩最差,矛盾;若乙正确,则甲丙错,乙比丙高,甲不是最高,丙最差,则成绩由高到低可为乙、甲、丙;若丙正确,则甲乙错,甲不是最高,乙比丙低,丙不是最差,排序可为丙、甲、乙.A、B、C、D中只有D可能.故选D.【题目点拨】本题考查合情推理,抓住只有一个人预测正确是解题的关键,属于基础题.2、C【解题分析】

转化条件得,再利用即可得解.【题目详解】由题意可知双曲线的渐近线为,又渐近线与轴所形成的锐角为,,双曲线离心率.故选:C.【题目点拨】本题考查了双曲线的性质,属于基础题.3、C【解题分析】

题意说明f'(1)=0,f(1)=7,由此可求得a,b【题目详解】f'(x)=3x∴f(1)=1+a+b+a2+a=7f'(1)=3+2a+b=0,解得a=3,b=-9时,f'(x)=3x2+6x-9=3(x-1)(x+3),当-3<x<1时,f'(x)<0,当x>1时,f'(x)>0a=-3,b=3时,f'(x)=3x2-6x+3=3∴a=3.故选C.【题目点拨】本题考查导数与极值,对于可导函数f(x),f'(x0)=0是x0为极值的必要条件,但不是充分条件,因此由4、D【解题分析】

先求出直线与坐标轴的交点,再求三角形的面积得解.【题目详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【题目点拨】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.5、D【解题分析】

根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.6、D【解题分析】

利用函数的奇偶性排除选项,利用特殊值定义点的位置判断选项即可.【题目详解】函数是偶函数,排除选项B,当x=2时,f(2)=<0,对应点在第四象限,排除A,C;故选D.【题目点拨】本题考查函数的图象的判断,考查数形结合以及计算能力.7、B【解题分析】8、B【解题分析】分析:求出函数的导数,结合图象求出函数的递增区间即可.详解:,

由图象得:时,,

故在递增,

故选:B.点睛:本题考查了函数的单调性问题,考查数形结合思想,考查导数的应用,是一道中档题.9、A【解题分析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.10、D【解题分析】

首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出.【题目详解】因为是有放回地取产品,所以每次取产品取到次品的概率为.从中取3次,为取得次品的次数,则,,选择D答案.【题目点拨】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.11、D【解题分析】

解:A.若sinx=tanx,则sinx=tanx,∵x∈(0,π),∴sinx≠0,则1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故∃x∈(0,π),使sinx=tanx错误,故A错误,B.“对任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B错误,C.当θ时,f(x)=sin(2x+θ)=sin(2x)=cos2x为偶函数,故C错误,D.在△ABC中,C,则A+B,则由sinA+sinB=sin(B)+sin(A)=cosB+cosA,则必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,两边平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,则2A=2B或2A=π﹣2B,即A=B或A+B,当A=B时,sinA+sinB=cosA+cosB等价为2sinA=2cosA,∴tanA=1,即A=B,此时C,综上恒有C,即充分性成立,综上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要条件,故D正确,故选D.考点:全称命题的否定,充要条件等12、C【解题分析】

根据实际问题,可抽象出,按对数运算求解.【题目详解】设该生物生存的年代距今是第个5730年,到今天需满足,解得:,万年.故选C.【题目点拨】本题考查了指数和对数运算的实际问题,考查了转化与化归和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、0.9【解题分析】

根据正态分布性质计算概率.【题目详解】由正态分布密度曲线知,又,所以,所以.【题目点拨】本题考查正态分布的性质,由正态分布曲线的对称性得若,则,.14、1【解题分析】分析:根据条件中所给的二项式定理的展开式,写出a和b的值,根据这两个数字的比值,写出关于n的等式,即方程,解方程就可以求出n的值.详解:∵(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),∴a=Cn3,b=Cn2,∵a:b=3:1,∴a:b=Cn3:Cn2=3:1,∴:=3:1,∴n=1.故答案为:1点睛:本题是考查二项式定理应用,考查二项式定理的二项式系数,属于基础题,解题的关键是利用通项公式确定a与b的值.15、【解题分析】

根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【题目详解】当且仅当与反向时取等号又整理得:本题正确结果:【题目点拨】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.16、【解题分析】因,故应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】分析:(1)由可得,然后将不等式中的绝对值去掉后解不等式可得所求.(2)结合题意运用绝对值的三角不等式证明即可.详解:(1),即,则,∴,∴不等式化为.①当时,不等式化为,解得;②当时,不等式化为,解得.综上可得.∴原不等式的解集为.(2)证明:∵,∴.又,∴.点睛:含绝对值不等式的常用解法(1)基本性质法:当a>0时,|x|<a⇔-a<x<a,|x|>a⇔x<-a或x>a.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.18、【解题分析】试题分析:先化简命题,得到相应的数集;再根据真值表得到的真假性,再分类进行求解.试题解析:若命题为真命题,则,即整理得,解得4分若命题为真命题,则,解得8分因为命题为假命题,为真命题,所以中一真一假,10分若真假,则;若假真,则,所以实数的取值范围为.12分考点:1.圆的一般方程;2.双曲线的结合性质;3.复合命题的真值表.19、(Ⅰ)曲线C的方程为.(Ⅱ)时,.【解题分析】

(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(Ⅱ)设,其坐标满足消去y并整理得,故.,即.而,于是.所以时,,故.当时,,.,而,所以.【题目详解】请在此输入详解!20、(1);(2).【解题分析】分析:(1)根据正弦定理边化角,根据三角恒等变换求出A;(2)根据面积求出bc=4,利用余弦定理求出a.详解:(1)由正弦定理得,∵∴,即.∵,∴,∴∴.(2)由:可得.∴,∵,∴由余弦定理得:,∴.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.21、【解题分析】

将复数进行四则运算,利用是实数,得到关于的二次方程,求得的值即可.【题目详解】,因为是实数,所以或,因为,所以.【题目点拨】本题考查复数的四则运算、共轭复数的概念、复数的分类,考查运算求解能力.22、(1);(2)存在直线满足题设条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论