吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题含解析_第1页
吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题含解析_第2页
吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题含解析_第3页
吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题含解析_第4页
吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省重点高中2024届高二数学第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.2.下列关于正态分布的命题:①正态曲线关于轴对称;②当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;③设随机变量,则的值等于2;④当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.其中正确的是()A.①② B.③④ C.②④ D.①④3.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.364.命题:,成立的一个充分但不必要条件为()A. B.C. D.5.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是A. B. C. D.6.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.7.已知关于的方程的两根之和等于两根之积的一半,则一定是()A.直角三角形 B.等腰三角形 C.钝角三角形 D.等边三角形8.若函数f(x)=(a∈R)是奇函数,则a的值为()A.1 B.0 C.-1 D.±19.从5名男同学,3名女同学中任选4名参加体能测试,则选到的4名同学中既有男同学又有女同学的概率为()A. B. C. D.10.函数f(x)=,则不等式f(x)>2的解集为()A. B.(,-2)∪(,2)C.(1,2)∪(,+∞) D.(,+∞)11.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a12.的内角的对边分别为,,,若的面积为,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若ax2+的展开式中x5的系数是—80,则实数a=_______.14.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.15.已知双曲线的离心率为,左焦点为,点(为半焦距).是双曲线的右支上的动点,且的最小值为.则双曲线的方程为_____.16.已知函数满足,且的导数,则不等式的解集为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:已知函数(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;18.(12分)已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.19.(12分)在提出的“变害为利,造福人民”的木兰溪全流域治理系统过程中,莆田市环保局根据水文观测点的历史统计数据,得到木兰溪某段流域的每年最高水位(单位:米)的频率分布直方图(如图).若将河流最高水位落入各组的频率视为概率,并假设每年河流最高水位相互独立.(1)求在未来3年里,至多有1年河流最高水位的概率(结果用分数表示);(2)根据评估,该流域对沿河企业影响如下:当时,不会造成影响;当时,损失1000万元;当时,损失6000万元.为减少损失,莆田市委在举行的一次治理听证会上产生了三种应对方案:方案一:布置能防御35米最高水位的工程,需要工程费用380万元;方案二:布置能防御31米最高水位的工程,需要工程费用200万元;方案三:不采取措施;试问哪种方案更好,请说明理由.20.(12分)某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.(1)求抽取的5人中男、女员工的人数分别是多少;(2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;(3)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为,试比较与的大小.(只需写出结论)21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆经过极点,且其圆心的极坐标为.(1)求圆的极坐标方程;(2)若射线分别与圆和直线交于点,(点异于坐标原点),求线段的长.22.(10分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的时间/分钟总人数203644504010将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(Ⅰ)请根据上述表格中的统计数据填写下面的列联表;课外体育不达标课外体育达标合计男女20110合计(Ⅱ)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式,其中.0.250.150.100.050.0250.0100.0050.0011.3232.0722.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.2、C【解题分析】分析:根据正态分布的定义,及正态分布与各参数的关系结合正态曲线的对称性,逐一分析四个命题的真假,可得答案.详解:①正态曲线关于轴对称,故①不正确,②当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”;正确;③设随机变量,则的值等于1;故③不正确;④当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移.正确.故选C.点睛:本题以命题的真假判断为载体考查了正态分布及正态曲线,熟练掌握正态分布的相关概念是解答的关键.3、C【解题分析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.4、A【解题分析】

命题p的充分不必要条件是命题p所成立的集合的真子集,利用二次函数的性质先求出p成立所对应的集合,即可求解.【题目详解】由题意,令是一个开口向上的二次函数,所以对x恒成立,只需要,解得,其中只有选项A是的真子集.故选A.【题目点拨】本题主要考查了充分不必要条件的应用,以及二次函数的性质的应用,其中解答中根据二次函数的性质,求得实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】

由抛物线方程化标准方程为,再由焦半径公式,可求得。【题目详解】抛物线为,由焦半径公式,得。选B.【题目点拨】抛物线焦半径公式:抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。6、B【解题分析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【题目详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【题目点拨】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.7、B【解题分析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.详解:设已知方程的两根分别为x1,x2,根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2=1﹣cosC,∵x1+x2=x1x2,∴2cosAcosB=1﹣cosC,∵A+B+C=π,∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,∴cosAcosB+sinAsinB=1,即cos(A﹣B)=1,∴A﹣B=0,即A=B,∴△ABC为等腰三角形.故选B.点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.8、B【解题分析】

根据奇函数的性质,利用,代入即可求解,得到答案.【题目详解】由题意,函数是定义域R上的奇函数,根据奇函数的性质,可得,代入可得,解得,故选B.【题目点拨】本题主要考查了函数的奇偶性的应用,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】

由题可知为古典概型,总的可能结果有种,满足条件的方案有三类:一是一男三女,一是两男两女,另一类是三男一女;每类中都用分步计数原理计算,再将三类组数相加,即可求得满足条件的结果,代入古典概型概率计算公式即可得到概率.【题目详解】根据题意,选4名同学总的可能结果有种.选到的4名同学中既有男同学又有女同学方案有三类:(1)一男三女,有种,(2)两男两女,有种.(3)三男一女,有种.共种结果.由古典概型概率计算公式,.故选D.【题目点拨】本题考查古典概型与排列组合的综合问题,利用排列组合的公式计算满足条件的种类是解决本题的关键.10、C【解题分析】当时,有,又因为,所以为增函数,则有,故有;当时,有,因为是增函数,所以有,解得,故有.综上.故选C11、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.12、C【解题分析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。二、填空题:本题共4小题,每小题5分,共20分。13、-2【解题分析】试题分析:因为,所以由,因此【考点】二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项往往是考查的重点.本题难度不大,易于得分.能较好地考查考生的基本运算能力等.14、.【解题分析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.15、【解题分析】

由,可知,而的最小值为,结合离心率为2,联立计算即可.【题目详解】设双曲线右焦点为,则,所以,而的最小值为,所以最小值为,又,解得,于是,故双曲线方程为.【题目点拨】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.16、【解题分析】试题分析:设根据题意可得函数在R上单调递减,然后根据可得,最后根据单调性可求出x的取值范围.设,,即函数F(x)在R上单调递减,,而函数F(x)在R上单调递减,,即,故答案为考点:导数的运算;其它不等式的解法三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)-2;(2)极小值为,极大值为.【解题分析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,2a﹣2=﹣6,a=﹣2(Ⅱ)当a=1时,,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)x(﹣∞,﹣1)﹣1(﹣1,2)2(2,+∞)f′(x)﹣0+0﹣f(x)单调减

单调增

单调减所以f(x)的极大值为,f(x)的极小值为.点睛:本题考查导数的综合应用,切线方程以及极值的求法,注意导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.18、(1)x2+y2-2x-2y-2=0(2)ρsin(θ+)=【解题分析】(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ(cosθcos+sinθsin)=2.∴x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.19、(1)(2)见解析【解题分析】

(1)先在频率分布直方图中找出河流最高水位在区间的频率,然后利用独立重复试验的概率公式计算出所求事件的概率;(2)计算出三种方案的损失费用期望,在三种方案中选择损失最小的方案.【题目详解】(1)由题设得,所以,在未来3年里,河流最高水位发生的年数为,则~,记事件“在未来3年里,至多有1年河流水位”为事件,则,∴未来3年里,至多有1年河流水位的概率为.(2)由题设得,,用分别表示方案一、方案二、方案三的损失,由题意得万元,的分布列为:20062000.990.01万元,的分布列为:0100060000.740.250.01∴万元,三种方案采取方案二的损失最小,采取方案二好.【题目点拨】本题考查独立重复试验概率的计算,考查离散型随机变量分布列及其数学期望,在求解时要弄清随机变量所服从的分布列类型,考查计算能力,属于中等题.20、(1)男员工3人,女员工2人(2)(3)【解题分析】

(1)根据分层抽样等比例抽取的性质,列式计算即可;(2)分别计算5人中选出3人的全部可能性和3人中有1人为男员工的可能性,用古典概型概率计算公式即可求得;(3)根据方差的性质,即可判断.【题目详解】(1)抽取的5人中男员工的人数为,女员工的人数为.(2)由(1)可知,抽取的5名员工中,有男员工3人,女员工2人.所以,根据题意,从人中抽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论