2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题含解析_第1页
2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题含解析_第2页
2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题含解析_第3页
2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题含解析_第4页
2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏北县数学高二第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,()A.3 B.6 C.9 D.122.假设如图所示的三角形数表的第行的第二个数为,则()A.2046 B.2416 C.2347 D.24863.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是14.已知圆,在圆中任取一点,则点的横坐标小于的概率为()A. B. C. D.以上都不对5.当生物死亡后,其体内原有的碳的含量大约每经过年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的,则该生物生存的年代距今约()A.万年 B.万年 C.万年 D.万年6.已知函数,则的解集为()A. B. C. D.7.已知函数,当取得极值时,x的值为()A. B. C. D.8.已知随机变量服从正态分布,若,则()A.0.4 B.0.8 C.0.6 D.0.39.已知函数的定义域为,若对于,分别为某三角形的三边长,则称为“三角形函数”.给出下列四个函数:①②③④.其中为“三角形函数”的个数是()A. B. C. D.10.定义在上的函数满足,,则不等式的解集为()A. B. C. D.11.正数a、b、c、d满足,,则()A. B.C. D.ad与bc的大小关系不定12.设两个正态分布N(μ1,)(σ1>0)和N(μ2,)(σ2>0)的密度函数图象如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则________14.课本中,在形如……的展开式中,我们把)叫做二项式系数,类似地在…的展开式中,我们把叫做三项式系数,则……的值为______.15.从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则为_____.16.已知,则a与b的大小关系______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)若是函数的一个极值点,求实数的值及在内的最小值;(Ⅱ)当时,求证:函数存在唯一的极小值点,且.18.(12分)设为数列的前项和,且,,.(Ⅰ)证明:数列为等比数列;(Ⅱ)求.19.(12分)已知抛物线C:y2=4x和直线l:x=-1.(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.20.(12分)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?21.(12分)已知函数在区间上的最大值为3,最小值为-17,求的值22.(10分)如图,圆锥的顶点是S,底面中心为O,OC是与底面直径AB垂直的一条半径,D是母线SC的中点.设圆往的高为4,异面直线AD与BC所成角为,求圆锥的体积;当圆锥的高和底面半径是中的值时,求二面角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】.故选C.2、B【解题分析】

由三角形数表特点可得,利用累加法可求得,进而得到结果.【题目详解】由三角形数表可知:,,,…,,,整理得:,则.故选:.【题目点拨】本题考查数列中的项的求解问题,关键是能够采用累加法准确求得数列的通项公式.3、A【解题分析】

根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【题目点拨】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.4、C【解题分析】分析:画出满足条件的图像,计算图形中圆内横坐标小于的面积,除以圆的面积。详解:由图可知,点的横坐标小于的概率为,故选C点睛:几何概型计算面积比值。5、C【解题分析】

根据实际问题,可抽象出,按对数运算求解.【题目详解】设该生物生存的年代距今是第个5730年,到今天需满足,解得:,万年.故选C.【题目点拨】本题考查了指数和对数运算的实际问题,考查了转化与化归和计算能力.6、C【解题分析】

根据分段函数的表达式,讨论当和时,不等式的解,从而得到答案。【题目详解】因为,由,得:①或②;解①得;;解②得:;所以的解集为;故答案选C【题目点拨】本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想,属于中档题。7、B【解题分析】

先求导,令其等于0,再考虑在两侧有无单调性的改变即可【题目详解】解:,,的单调递增区间为和,减区间为,在两侧符号一致,故没有单调性的改变,舍去,故选:B.【题目点拨】本题主要考查函数在某点取得极值的性质:若函数在取得极值.反之结论不成立,即函数有,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.8、C【解题分析】分析:根据随机变量ξ服从正态分布,得到正态曲线关于对称,根据,得到对称区间上的概率,从而可求.详解:由随机变量服从正态分布可知正态密度曲线关于轴对称,

而,

则故,

故选:C.点睛:本题主要考查正态分布的概率求法,结合正态曲线,加深对正态密度函数的理解.9、B【解题分析】

根据构成三角形条件,可知函数需满足,由四个函数解析式,分别求得其值域,即可判断是否满足不等式成立.【题目详解】根据题意,对于,分别为某三角形的三边长,由三角形性质可知需满足:对于①,,如当时不能构成三角形,所以①不是“三角形函数”;对于②,,则,满足,所以②是“三角形函数”;对于③,,则,当时不能构成三角形,所以③不是“三角形函数”;对于④,,由指数函数性质可得,满足,所以④是“三角形函数”;综上可知,为“三角形函数”的有②④,故选:B.【题目点拨】本题考查了函数新定义的综合应用,函数值域的求法,三角形构成的条件应用,属于中档题.10、B【解题分析】

由已知条件构造辅助函数g(x)=f(x)+lnx,求导,根据已知求得函数的单调区间,结合原函数的性质和函数值,即可的解集.【题目详解】令g(x)=f(x)+lnx(x>0),则g'(x)=,又函数满足,∴g'(x)=,g(x)在单调递增.∵,∴,∴当,,当,,∴当,则不等式成立.故选:B.【题目点拨】本题主要考查导数在研究函数中的应用和函数综合,一般采用构造函数法,求导后利用条件判断函数的单调性,再根据特殊值解出不等式所对应的区间即可,属于中等题.11、C【解题分析】因为a,b,c,d均为正数,又由a+d=b+c得a2+2ad+d2=b2+2bc+c2所以(a2+d2)﹣(b2+c2)=2bc﹣2ad.①又因为|a﹣d|<|b﹣c可得a2﹣2ad+d2<b2﹣2bc+c2,②将①代入②得2bc﹣2ad<﹣2bc+2ad,即4bc<4ad,所以ad>bc故选C.12、A【解题分析】由密度函数的性质知对称轴表示期望,图象胖瘦决定方差,越瘦方差越小,越胖方差越大,所以μ1<μ2,σ1<σ2.故选A.考点:正态分布.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

由题得,令x=0即得解.【题目详解】由题得,令x=0得,所以.故答案为1【题目点拨】本题主要考查对函数求导,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、0【解题分析】

根据的等式两边的项的系数相同,从而求得要求式子的值.【题目详解】,其中系数为……,,而二项式的通项公式,因为2015不是3的倍数,所以的展开式中没有项,由代数式恒成立可得……,故答案为:0.【题目点拨】本题考查二项式定理,考查学生的分析能力和理解能力,关键在于构造并分析其展开式,是一道难题.15、【解题分析】分析:由题意,从装有个红球和个白球的袋中随机取出个球的取法,再求得当个球都是红球的取法,利用古典概型的概率计算公式,即可得到答案.详解:由题意,从装有个红球和个白球的袋中随机取出个球,共有种方法,其中当个球都是红球的取法有种方法,所以概率为.点睛:本题主要考查了古典概型及其概率的计算公式的应用,其中概率排列、组合的知识得到基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力.16、a<b【解题分析】

可先利用作差法比较两数平方的大小,然后得出两数的大小关系.【题目详解】解:因为,,所以,因为,所以,而,所以得到.【题目点拨】本题考查了综合法与分析法比较两数的大小关系,解题时可先用分析法进行分析,再用综合法进行书写解题过程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)见解析【解题分析】

(Ⅰ)由已知条件的导函数,以及,从而求出实数的值,利用导数求出函数在内的单调性,从而得到在内的最小值(Ⅱ)由题可得,令,要证函数存在唯一的极小值点,即证只有唯一根,利用导数求出的单调区间与值域即可,且由零点定理可知,由,可得,代入中,利用导数求出在内的最值即可证明。【题目详解】(Ⅰ)由题可得:,则,是函数的一个极值点,,即,解得:,经检验,当时,是函数的一个极值点;;当时,,令,解得:或,当时,、的变化如下表:所以当时,有最小值,(Ⅱ)当时,,令,,则,由于恒成立,所以恒大于零,则在上单调递增,由于,,根据零点定理,可得存在唯一的,使得,令,解得:,,当或时,,即的单调增区间为,,当时,,即的单调减区间为,函数存在唯一的极小值点,且,,则;,则,令,解得:或,当时,,则在上单调递减,则,,所以【题目点拨】本题考查导数在函数最值以及极值中的运用,考查学生转化的思想,综合性较强,有一定难度。18、(1)见解析(2)【解题分析】

可通过和来构造数列,得出是等比数列,在带入得出首项的值,以此得出数列解析式。可以先把分成两部分依次求和。【题目详解】(1)因为,所以,即,则,所以,又,故数列是首项为2,公比为2的等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以。【题目点拨】本题考查构造数列以及数列的错位相减法求和。19、(1);(2)证明见解析.【解题分析】试题分析:(1)设Q(x,y),则(x+1)2=x2+y2,又y2=4x,解得Q;(2)设点(-1,t)的直线方程为y-t=k(x+1),联立y2=4x,则Δ=0,得k2+kt-1=0,则切点分别为A,B,所以A,B,F三点共线,AB过点F(1,0)。试题解析:(1)设Q(x,y),则(x+1)2=x2+y2,即y2=2x+1,由解得Q.(2)设过点(-1,t)的直线方程为y-t=k(x+1)(k≠0),代入y2=4x,得ky2-4y+4t+4k=0,由Δ=0,得k2+kt-1=0,特别地,当t=0时,k=±1,切点为A(1,2),B(1,-2),显然AB过定点F(1,0).一般地方程k2+kt-1=0有两个根,∴k1+k2=-t,k1k2=-1,∴两切点分别为A,B,∴=,=,又-=2=0,∴与共线,又与有共同的起点F,∴A,B,F三点共线,∴AB过点F(1,0),综上,直线AB过定点F(1,0).点睛:切点弦问题,本题中通过点P设切线,求得斜率k,再求出切点A,B,通过证明与共线,AB过点F(1,0)。一般的,我们还可以通过设切点,写出切线方程,直接由交点P,结合两点确定一条直线,写出切点弦直线方程,进而得到定点。20、(Ⅰ)曲线C的方程为.(Ⅱ)时,.【解题分析】

(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(Ⅱ)设,其坐标满足消去y并整理得,故.,即.而,于是.所以时,,故.当时,,.,而,所以.【题目详解】请在此输入详解!21、k=﹣1,B=﹣17或k=1,B=3【解题分析】试题分析:由题设知k≠1且f'(x)=3kx(x-2),1<x<2时,x(x-2)<1;x<1或x>2时,x(x-2)>1;x=1和x=2时,f'(x)=1.由题设知-2≤x≤2,f(-2)=-21k+B,f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论