版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省五校2024届高二数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为随机变量,,若随机变量的数学期望,则等于()A. B.C. D.2.已知点为双曲线上一点,则它的离心率为()A. B. C. D.3.如图,向量对应的复数为,则复数的共轭复数是()A. B. C. D.4.已知函数,且,则不等式的解集为A. B. C. D.5.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.1686.若实数x、y的取值如表,从散点图分析,y与x线性相关,且回归方程为y=3.5x12345y27812mA.15 B.16 C.16.2 D.177.复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.8.设函数的定义域,函数y=ln(1-x)的定义域为,则A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)9.若函数存在增区间,则实数的取值范围为()A. B.C. D.10.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是()A.2 B.3 C.4 D.511.已知函数,若存在区间D,使得该函数在区间D上为增函数,则的取值范围为()A. B.C. D.12.若对任意正数x,不等式恒成立,则实数的最小值()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.=________________。14.复数的虚部是______.15.已知集合,,则_______.16.如果复数的实部与虚部相等,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.18.(12分)如图,在四棱锥中,底面是边长为2的正方形,侧面是等腰直角三角形,且,侧面⊥底面.(1)若分别为棱的中点,求证:∥平面;(2)棱上是否存在一点,使二面角成角,若存在,求出的长;若不存在,请说明理由.19.(12分)已知函数f(x)=x3(a>0,且a≠1).(1)讨论f(x)的奇偶性;(2)求a的取值范围,使f(x)>0在定义域上恒成立.20.(12分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围.21.(12分)某校20名同学的数学和英语成绩如下表所示:将这20名同学的两颗成绩绘制成散点图如图:根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)附:位同学的两科成绩的参考数据:参考公式:22.(10分)已知,其前项和为.(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据解得,所以.【题目详解】因为,得,即.所以.故选【题目点拨】本题主要考查二项分布,同时考查了数学期望,熟记公式是解题的关键,属于简单题.2、B【解题分析】
将点P带入求出a的值,再利用公式计算离心率。【题目详解】将点P带入得,解得所以【题目点拨】本题考查双曲线的离心率,属于基础题。3、B【解题分析】
由已知求得,代入,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由图可知,,,复数的共轭复数是.故选:.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.4、C【解题分析】
由,可分别考虑分段函数的每一段取值为的情况,即可求解出的值;然后再分别利用每一段函数去考虑的情况.【题目详解】函数,可知时,,所以,可得解得.不等式即不等式,可得:或,解得:或,即故选:C.【题目点拨】利用分段函数求解参数取值时,需要对分段函数的每一段都进行考虑;并且在考虑每一段分段函数的时候,注意定义域.5、B【解题分析】分两类,一类是歌舞类用两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种.选B.6、D【解题分析】
计算出样本的中心点x,y,将该点的坐标代入回归直线方程可得出【题目详解】由表格中的数据可得x=1+2+3+4+55由于回归直线过点x,y,所以,3.5×3-1.3=m+295【题目点拨】本题考查回归直线的基本性质,在解回归直线相关的问题时,熟悉结论“回归直线过样本的数据中心点x,7、C【解题分析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.8、D【解题分析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.9、C【解题分析】
先假设函数不存在增区间,则单调递减,利用的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数的取值范围,再取这个取值范围的补集,求得题目所求实数的取值范围.【题目详解】若函数不存在增区间,则函数单调递减,此时在区间恒成立,可得,则,可得,故函数存在增区间时实数的取值范围为.故选C.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.10、C【解题分析】把三视图还原为原几何体为一个四棱锥,底面是边长为3的正方形,侧棱底面ABCD,四个侧面均为直角三角形,则此几何体各面中直角三角形的个数是4个,选C.11、B【解题分析】
求出导函数,由题意说明不等式有解。【题目详解】由题意有解.当时,一定有解;当时,也一定有解.当时,需要,即,综上所述,,故选:B。【题目点拨】本题考查用导数研究函数的单调性。函数有单调增区间,则有解,这样可结合二次函数或一次函数的性质得出结论。12、D【解题分析】分析:由题意可得恒成立,利用基本不等式求得的最大值为,从而求得实数的最小值.详解:由题意可得恒成立.
由于(当且仅当时取等号),故的最大值为,,即得最小值为,
故选D.点睛:本题主要考查函数的恒成立问题,基本不等式的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用定积分的几何意义及其计算公式,可得结论.【题目详解】由题意,可得.故答案为.【题目点拨】本题主要考查了定积分的计算公式,以及定积分的几何意义的应用,其中解答中熟记定积分的计算公式,合理使用定积分的几何意义求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
利用错位相消法可以化简式子,最后求出它的虚部.【题目详解】令,,得,,.故答案为:【题目点拨】本题考查了错位相消法,考查了等比数列的前项和公式,考查了乘方运算的性质,考查了数学运算能力.15、【解题分析】
集合,是数集,集合的交集运算求出公共部分.【题目详解】,,故答案为:【题目点拨】本题考查集合交集运算.交集运算口诀:“越交越少,公共部分”.16、7【解题分析】
根据复数除法运算可求得,根据实部与虚部相等可构造方程求得结果.【题目详解】,,解得:.故答案为:.【题目点拨】本题考查根据复数的实部和虚部定义求解参数值的问题,涉及到复数的除法运算问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线:,直线的直角坐标方程;(2)1.【解题分析】试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点到,的距离之积试题解析:(1)曲线化为普通方程为:,由,得,所以直线的直角坐标方程为.(2)直线的参数方程为(为参数),代入化简得:,设两点所对应的参数分别为,则,.18、(1)见解析(2)【解题分析】
分析:(1)取中点,连结,由三角形中位线定理可得,可证明四边形为平行四边形,可得,由线面平行的判定定理可得结论;(2)取中点,连结、,先证明、、两两垂直.以为原点,分别以、、正方向为轴、轴、轴正方向建立空间直角坐标系,设,利用向量垂直数量积为零列方程组,求出平面的法向量,平面的法向量为,由空间向量夹角余弦公式列方程可得结果.详解:(1)取中点,连结,∵分别为、中点,∴//,,又点为中点,∴且,∴四边形为平行四边形,∴∥,又平面,平面,∴∥平面.(2)取中点,连结、,∵是以为直角的等腰直角三角形,又为的中点,∴,又平面⊥平面,由面面垂直的性质定理得⊥平面,又平面,∴⊥,由已知易得:、、两两垂直.以为原点,分别以、、正方向为x轴、y轴、z轴正方向建立空间直角坐标系如图示,则,设,则:,.设平面ABF的法向量为,则,∴,令,则,∴.又平面的法向量为,由二面角成角得:,∴,解得:,或不合题意,舍去.∴,当棱上的点满足时,二面角成角.点睛:利用法向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19、(1)函数f(x)是偶函数(2)∈(1,+∞)【解题分析】
(1)先求函数f(x)的定义域,再判断f(-x)与f(x)是否相等即可得到结果;(2)由f(x)是偶函数可知只需讨论x>0时的情况,则有x3>0,从而求得结果.【题目详解】(1)由于ax-1≠0,则ax≠1,得x≠0,∴函数f(x)的定义域为{x|x≠0}.对于定义域内任意x,有f(-x)=(-x)3=(-x)3=(-x)3=x3=f(x),∴函数f(x)是偶函数.(2)由(1)知f(x)为偶函数,∴只需讨论x>0时的情况,当x>0时,要使f(x)>0,则x3>0,即+>0,即>0,则ax>1.又∵x>0,∴a>1.∴当a∈(1,+∞)时,f(x)>0.【题目点拨】本题考查判断函数奇偶性的方法和恒成立问题,判断函数的奇偶性先求定义域,再判断f(-x)与f(x)是否相等或者互为相反数,相等即为偶函数,互为相反数则为奇函数,属中档题.20、(1)(2)【解题分析】
(1)求出.利用导函数的符号判断函数的单调性然后求解最大值;(2)分情况:①在时,②在时,③在时,判断函数的单调性,求解函数的极值与0的关系,然后求解零点个数.【题目详解】(1)对求导数,.在时,为增函数,在时为减函数,∴,从而的最大值为.(2)①在时,在R上为增函数,且,故无零点.②在时,在R上单增,又,,故在R上只有一个零点.③在时,由可知在时有唯一极小值,.若,,无零点,若,,只有一个零点,若,,而.由(1)可知,在时为减函数,∴在时,,从而.∴在与上各有一个零点.综上讨论可知:时,有两个零点.【题目点拨】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,函数的零点个数的判断,是难题.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数,另一个是含自变量的函数,注意让含有自变量的函数式子尽量简单一些.21、90分;分.【解题分析】
计算出剩下名学生的数学、英语成绩之和,于是求得平均分;可先计算出,再利用公式可计算出线性回归方程,代入学号为的同学成绩,即得答案.【题目详解】由题名学生的数学成绩之和为,英语成绩之和为取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和为其余名学生的英语成绩之和为其余名学生的数学平均分,英语平均分都为;不妨设取消的两名同学的两科成绩分别为数学成绩与英语成绩的线性回归方程代入学号为的同学成绩,得本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【题目点拨】本题主要考查平均数及方差,线性回归方程的相关计算,意在考查学生的转化能力,分析能力及运算技巧,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北第二师范学院《游泳》2022-2023学年第一学期期末试卷
- 2024建筑施工设计合同范本专业版
- 康复护理8分钟个案比赛
- 2024水库经营承包合同(范本)
- 湖北大学知行学院《影视造型与表演基础》2023-2024学年第一学期期末试卷
- 2024工程专业分包合同范本
- 湖北大学知行学院《生物统计学》2021-2022学年第一学期期末试卷
- 湖北大学知行学院《公司治理》2022-2023学年第一学期期末试卷
- 围绝经期功能失调性子宫出血护理措施
- 《怎样治疗高血脂》课件
- 部编版《道德与法治》五年级上册第10课《传统美德 源远流长》优质课件
- 送达地址确认书(样本)
- 红楼梦第五回课件
- 《水浒传》导读4杨志课件
- 施工升降机维修保养检查记录
- 初中语文人教七年级上册穿井得一人说课稿
- 3.3.1幂函数的概念课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
- DB44∕T 2041-2017 渡槽安全鉴定规程
- 生药采收加工贮藏和养护
- DB33T 768.14-2018 安全技术防范系统建设技术规范 第14部分:公安监管场所
- DB23∕T 1019-2020 黑龙江省建筑工程资料管理标准
评论
0/150
提交评论