2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题含解析_第1页
2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题含解析_第2页
2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题含解析_第3页
2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题含解析_第4页
2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省阜阳市颍上第二中学数学高二第二学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.平面与平面平行的条件可以是()A.内有无穷多条直线都与平行B.内的任何直线都与平行C.直线,直线,且D.直线,且直线不在平面内,也不在平面内2.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为A.5 B.2 C.3 D.23.设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.44.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=116x2(0≤x≤2)(12)x(x>2),若关于x的方程[f(xA.(-∞,-C.(-125.现有四个函数:①;②;③;④的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A.①④②③ B.①④③② C.④①②③ D.③④②①6.给出四个函数,分别满足①;②;③;④,又给出四个函数图象正确的匹配方案是()A.①—丁②—乙③—丙④—甲B.①—乙②—丙③—甲④—丁C.①—丙②—甲③—乙④—丁D.①—丁②—甲③—乙④—丙7.函数的单调递减区间是()A. B. C. D.8.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是19.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.512 B.12 C.710.椭圆的左、右焦点分别为,弦过,若的内切圆的周长为,两点的坐标分别为,,则()A. B. C. D.11.已知离散型随机变量的分布列为表格所示,则随机变量的均值为()0123A. B. C. D.12.若某几何体的三视图如图所示,则这个几何体的表面积是()A. B. C.19 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________.14.如图是棱长为的正方体的平面展开图,则在这个正方体中,直线与所成角的余弦值为________.15.设实数满足,则的最小值为______16.已知定义在上的函数满足,且当时,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:分类积极参加班级工作不太主动参加班级工作总计学习积极性高18725学习积极性一般61925总计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.18.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.19.(12分)已知圆C经过点,且圆心C在直线上,又直线与圆C相交于P,Q两点.(1)求圆C的方程;(2)若,求实数的值.20.(12分)用0,1,2,3,4五个数字组成五位数.(1)求没有重复数字的五位数的个数;(2)求没有重复数字的五位偶数的个数.21.(12分)求的二项展开式中的第5项的二项式系数和系数.22.(10分)已知函数,.()当时,证明:为偶函数;()若在上单调递增,求实数的取值范围;()若,求实数的取值范围,使在上恒成立.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据空间中平面与平面平行的判定方法,逐一分析题目中的四个结论,即可得到答案.【题目详解】平面α内有无数条直线与平面β平行时,两个平面可能平行也可能相交,故A不满足条件;平面α内的任何一条直线都与平面β平行,则能够保证平面α内有两条相交的直线与平面β平行,故B满足条件;直线a⊂α,直线b⊂β,且a∥β,b∥α,则两个平面可能平行也可能相交,故C不满足条件;直线a∥α,a∥β,且直线a不在α内,也不在β内,则α与β相交或平行,故D错误;故选B.【题目点拨】本题考查的知识点是空间中平面与平面平行的判定,熟练掌握面面平行的定义和判定方法是解答本题的关键.2、D【解题分析】

利用点到直线的距离公式求出|PF2|cos∠POF2=ac,由诱导公式得出cos∠POF1=-ac,在【题目详解】如下图所示,双曲线C的右焦点F2(c,0),渐近线l1由点到直线的距离公式可得|PF由勾股定理得|OP|=|O在RtΔPOF2中,∠OPF在ΔPOF2中,|OP|=a,|PFcos∠PO由余弦定理得cos∠POF1即c=2a,因此,双曲线C的离心率为e=c【题目点拨】本题考查双曲线离心率的求解,属于中等题。求离心率是圆锥曲线一类常考题,也是一个重点、难点问题,求解椭圆或双曲线的离心率,一般有以下几种方法:①直接求出a、c,可计算出离心率;②构造a、c的齐次方程,求出离心率;③利用离心率的定义以及椭圆、双曲线的定义来求解。3、D【解题分析】

根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5)的正误.【题目详解】若为互斥事件,且,则,故(1)正确;若则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若,当为相互独立事件时,故(4)错误;若则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【题目点拨】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.4、B【解题分析】

根据题意,由函数f(x)的解析式以及奇偶性分析可得f(x)的最小值与极大值,要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,转化为t2+at+b=0必有两个根【题目详解】根据题意,当x≥0时,f(x)=1f(x)在(0,2)上递增,在(2,+∞)上递减,当x=2时,函数当x=0时,函数f(x)取得最小值0,又由函数为偶函数,则f(x)在(-∞,-2)上递增,在当x=-2时,函数f(x)取得极大值14当x=0时,函数f(x)取得最小值0,要使关于x的方程[f(x)]设t=f(x),则t2+at+b=0必有两个根t1且必有t1=14,y=0<t2<14,y关于x的方程[f(x)]可得1又由-a=t则有-12<a<-【题目点拨】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数y=f(x)-g(x)的零点⇔函数y=f(x)-g(x)在x轴的交点⇔方程f(x)-g(x)=0的根⇔函数y=f(x)与y=g(x)的交点.5、A【解题分析】

根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【题目详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;

②为奇函数,它的图象关于原点对称,它在上的值为正数,

在上的值为负数,故第三个图象满足;

③为奇函数,当时,,故第四个图象满足;

④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,

故选A.【题目点拨】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.6、D【解题分析】四个函数图象,分别对应甲指数函数,乙对数函数,丙幂函数,丁正比例函数;而满足①是正比例函数;②是指数函数;③是对数函数;④是幂函数,所以匹配方案是①—丁②—甲③—乙④—丙,选D。7、D【解题分析】分析:对求导,令,即可求出函数的单调递减区间.详解:函数的定义域为,得到.故选D点睛:本题考查利用导数研究函数的单调性,属基础题.8、A【解题分析】

根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【题目点拨】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.9、C【解题分析】试题分析:由题意可知,事件A与事件B是相互独立的,而事件A、B中至少有一件发生的事件包含AB、AB、AB,又P(A)=12,考点:相互独立事件概率的计算.10、A【解题分析】

设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.可得==•|F1F1|,即可得出.【题目详解】由椭圆=1,可得a=5,b=4,c==2.如图所示,设△ABF1的内切圆的圆心为G.连接AG,BG,GF1.设内切圆的半径为r,则1πr=π,解得r=.则==•|F1F1|,∴4a=|y1﹣y1|×1c,∴|y1﹣y1|==.故选C.【题目点拨】本题考查了椭圆的标准方程定义及其性质、三角形内切圆的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11、C【解题分析】分析:利用离散型随机变量分布列的性质求得到,进而得到随机变量的均值详解:由已知得,解得:∴E(X)=故选:C点睛:本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的基本性质,是基础题.12、B【解题分析】

判断几何体的形状几何体是正方体与一个四棱柱的组合体,利用三视图的数据求解几何体的表面积即可.【题目详解】由题意可知几何体是正方体与一个四棱柱的组合体,如图:几何体的表面积为:.故选B.【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积.【题目详解】由题意可得,底面四边形为边长为的正方形,其面积,顶点到底面四边形的距离为,由四棱锥的体积公式可得:.【题目点拨】本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.14、【解题分析】

结合正方体的平面展开图,作出正方体的直观图,可知是正三角形,从而可知直线与所成角为,即可得到答案.【题目详解】作出正方体的直观图,连接,,易证三角形是正三角形,而,故直线与所成角为,则直线与所成角的余弦值为.【题目点拨】本题考查了正方体的结构特征,考查了异面直线的夹角的求法,属于中档题.15、-3【解题分析】

作出不等式组对应的平面区域,设,利用目标函数的几何意义,利用数形结合确定的最小值,得到答案.【题目详解】由题意,画出约束条件所对应的平面区域,如图所示,设,则,当直线过点A时,直线在轴上的截距最大,此时目标函数取得最小值,由,解得,所以目标函数的最小值为.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、18【解题分析】

由可判断函数周期为2,所以,将代入即可求值【题目详解】由,可得所以18【题目点拨】若函数满足,则函数周期为,对于给出x的取值不在给定区间的,必须要根据周期性转化为在对应区间的x值,再代入表达式进行求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解题分析】

(1)结合表格根据古典概型的概率公式计算概率即可;(2)计算的观测值,对照表中数据得出统计结论.【题目详解】(1)积极参加班级工作的学生有24人,总人数为50人,所以抽到积极参加班级工作的学生的概率,不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生概率.(2)由列联表知,的观测值≈11.538,由11.538>10.828.所以在犯错误的概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.【题目点拨】本题考查了古典概型的应用问题,也考查了两个变量线性相关的应用问题,准确计算的观测值是解题的关键,是基础题目.18、(1),有理项有三项,分别为:;(2)128,128,相等【解题分析】

(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【题目详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【题目点拨】本题主要考查二项式定理的通项,二项式系数和,注意二项式系数和与系数和的区别,意在考查学生的计算能力和分析能力,难度中等.19、(1);(2)0【解题分析】(1)设圆心C(a,a),半径为r.因为圆C经过点A(-2,0),B(0,2),所以|AC|=|BC|=r,易得a=0,r=2,所以圆C的方程是x2+y2=4.(2)因为·=2×2×cos〈,〉=-2,且与的夹角为∠POQ,所以cos∠POQ=-,∠POQ=120°,所以圆心C到直线l:kx-y+1=0的距离d=1,又d=,所以k=0.20、(1)96(2)60【解题分析】分析:(1)首位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论