版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市东丽区第一百中学2024届高二数学第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,是不全相等的正数,则下列命题正确的个数为()①;②与及中至少有一个成立;③,,不能同时成立.A. B. C. D.2.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3A.-1 B.1 C.-2 D.23.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种4.下列参数方程可以用来表示直线的是()A.(为参数) B.(为参数)C.(为参数) D.(为参数)5.抛物线的准线方程为()A. B. C. D.6.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.7.设函数,若实数分别是的零点,则()A. B. C. D.8.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-49.设A、B为非空集合,定义集合A*B为如图非阴影部分表示的集合,若则A*B=()A.(0,2) B.[0,1]∪[2,+∞) C.(1,2] D.[0,1]∪(2,+∞)10.一个质量均匀的正四面体型的骰子,其四个面上分别标有数字,若连续投掷三次,取三次面向下的数字分别作为三角形的边长,则其能构成钝角三角形的概率为()A. B. C. D.11.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,F1,F2分别是双曲线(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A,B两点,若△F2AB是等边三角形,则双曲线的离心率为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,.则的值为__________.14.若某一射手射击所得环数的分布列如下:456789100.020.040.060.090.280.290.22则此射手“射击一次命中环数”的概率是_________.15.已知点均在表面积为的球面上,其中平面,,则三棱锥的体积的最大值为__________.16.已知的外接圆半径为1,,点在线段上,且,则面积的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二项式的展开式中,前三项系数的绝对值成等差数列.(1)求正整数的值;(2)求展开式中二项式系数最大的项;(3)求展开式中系数最大的项.18.(12分)“过桥米线”是云南滇南地区特有的一种小吃.在云南某地区“过桥米线”有三种品牌的店,其中品牌店家,品牌店家,品牌店家.(Ⅰ)为了加强对食品卫生的监督管理工作,该地区的食品安全管理局决定按品牌对这家“过桥米线”专营店采用分层抽样的方式进行抽样调查,被调查的店共有家,则品牌的店各应抽取多少家?(Ⅱ)为了吸引顾客,所有品牌店举办优惠活动:在一个盒子中装有形状、大小相同的个白球和个红球.顾客可以一次性从盒中抽取个球,若是个红球则打六折(按原价的付费),个红球个白球打八折,个红球个白球则打九折,个白球则打九六折.小张在该店点了价值元的食品,并参与了抽奖活动,设他实际需要支付的费用为,求的分布列与数学期望.19.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使用乙种支付方式的学生的支付金额分布情况如下:支付金额(元)支付方式大于1000仅使用甲15人8人2人仅使用乙10人9人1人(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求的分布列和数学期望20.(12分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.21.(12分)在各项为正的数列{an}中,数列的前n项和Sn满足.(1)求(2)由(1)猜想数列的通项公式,并用数学归纳法证明你的猜想.22.(10分)已知函数.(1)判断的奇偶性并证明你的结论;(2)解不等式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
①假设等式成立,由其推出a、b、c的关系,判断与题干是否相符;②假设其全部不成立,由此判断是否存在符合条件的数;③举例即可说明其是否能够同时成立.【题目详解】对①,假设(a-b)2+(b-c)2+(c-a)2=0⇒a=b=c与已知a、b、c是不全相等的正数矛盾,∴①正确;
对②,假设都不成立,这样的数a、b不存在,∴②正确;
对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.
故选C.【题目点拨】本题考查命题真假的判断,利用反证法、分析法等方式即可证明,有时运用举例说明的方式更快捷.2、A【解题分析】
先求出f2,再利用奇函数的性质得f【题目详解】由题意可得,f2=22-3=1因此,f-2=-f【题目点拨】本题考查利用函数的奇偶性求值,解题时要注意结合自变量选择解析式求解,另外就是灵活利用奇偶性,考查计算能力,属于基础题。3、A【解题分析】
从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【题目详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A【题目点拨】本题主要考查分步乘法计数原理与组合的综合问题.4、A【解题分析】
选项A:利用加减消元法消参,并求出的取值范围,即可判断出所表示的图形;选项B:利用加减消元法消参,并求出的取值范围,即可判断出所表示的图形;选项C:利用加减消元法消参,并求出的取值范围即可判断出所表示的图形;选项D:利用同角的三角函数关系式进行消参即即可判断出所表示的图形,最后选出正确答案.【题目详解】选项A:,而,所以参数方程A表示的是直线;选项B:,而,所以参数方程B表示的是射线;选项C:,而,所以参数方程C表示的是线段;选项D:,所以参数方程D表示的是单位圆,故选A.【题目点拨】本题考查了参数方程化为普通方程,并判断普通方程所表示的平面图形,求出每个参数方程中横坐标的取值范围是解题的关键.5、D【解题分析】
化简抛物线方程为标准方程,然后求解准线方程.【题目详解】抛物线的标准方程为:,准线方程.故选:D.【题目点拨】本题考查抛物线的简单性质的应用,考查计算能力.6、B【解题分析】
设连线的中点为,再表示出动点的坐标,代入圆化简即可.【题目详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B【题目点拨】本题主要考查了轨迹方程的一般方法,属于基础题型.7、A【解题分析】由题意得,函数在各自的定义域上分别为增函数,∵,又实数分别是的零点∴,∴,故.选A.点睛:解答本题时,先根据所给的函数的解析式判断单调性,然后利用判断零点所在的范围,然后根据函数的单调性求得的取值范围,其中借助0将与联系在一起是关键.8、D【解题分析】
根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【题目详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【题目点拨】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。9、D【解题分析】因为,所以A*B=[0,1]∪(2,+∞).10、C【解题分析】
三次投掷总共有64种,只有长度为或223的三边能构成钝角三角形,由此计算可得答案.【题目详解】解:由题可知:三次投掷互不关联,所以一共有种情况:能构成链角三角形的三边长度只能是:或者是所以由长度为的三边构成钝角三角形一共有:种:由三边构成钝角三角形一共有:种:能构成钝角三角形的概率为.故选:C.【题目点拨】本题考查了古典概型的概率求法,分类计数原理,属于基础题.11、B【解题分析】,对应点,位于第二象限,选B.12、D【解题分析】
连接,利用三角形边之间的关系得到,,代入离心率公式得到答案.【题目详解】连接,依题意知:,,所以.【题目点拨】本题考查了双曲线的离心率,利用三角形边之间的关系和双曲线性质得到的关系式是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
在二项展开式中分别令和,然后两个等式相减可得.【题目详解】解:令,得:①令,得②①②可得所以:.故答案为:.【题目点拨】本题考查了利用二项展开式赋值求系数,属于基础题.14、【解题分析】因,故应填答案。15、【解题分析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面△ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.16、【解题分析】
由所以可知为直径,设,求导得到面积的最大值.【题目详解】由所以可知为直径,所以,设,则,在中,有,,所以的面积,.方法一:(导数法),所以当时,,当时,,所以在上单调递增,在上单调递减,所以当时,的面积的最大值为.方法二:(均值不等式),因为.当且仅当,即时等号成立,即.【题目点拨】本题考查了面积的最大值问题,引入参数是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】
(1)根据等差中项的性质列方程可得出的值;(2)根据二项式系数的对称性和单调性可得出二项式系数最大的项;(3)由,求出的取值范围,即可得出系数最大项对应的项的序数.【题目详解】(1)二项式展开式的通项为,由于展开式系数的绝对值成等差数列,则,即,整理得,,解得;(2)第项的二项式系数为,因此,第项的二项式系数最大,此时,;(3)由,得,整理得,解得,所以当或时,项的系数最大.因此,展开式中系数最大的项为.【题目点拨】本题考查二项式定理的应用,二项式系数的定义和基本性质,同时也考查了项的系数最大项的求解,考查运算求解能力,属于中等题.18、(Ⅰ)品牌店家,应抽查品牌店家;(Ⅱ)分布列见解析,【解题分析】
(1)根据分层抽样每层按比例分配,即可求解;(2)求出随机变量的可能取值,并求出相应的概率,即可得到分布列,进而根据期望公式求解.【题目详解】(Ⅰ)由题意得,应抽查品牌店家,应抽查品牌店家;(Ⅱ)离散型随机变量的可能取值为.于是,,,.的分布列如下60809096所以【题目点拨】本题考查分层抽样、离散型随机变量的分布列和期望,求出随机变量的概率是解题关键,属于基础题.19、(1)0.45;(2)的分布列见解析;数学期望为0.9【解题分析】
(1)用减去仅使用甲、仅使用乙和两种都不使用的人数,求得都使用的人数,进而求得所求概率.(2)的所有可能值为0,1,2.根据相互独立事件概率计算公式,计算出的分布列,并求得数学期望.【题目详解】解:(1)由题意知,样本中仅使用甲种支付方式的学生有人,仅使用乙种支付方式的学生有人,甲、乙两种支付方式都不使用的学生有10人.故样本中甲、乙两种支付方式都使用的学生有人所以从全校学生中随机抽取1人,该学生上个月甲、乙两种支付方式都使用的概率估计为.(2)的所有可能值为0,1,2.记事件为“从样本仅使用甲种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”,事件为“从样本仅使用乙种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”.由题设知,事件A,B相互独立,且所以所以的分布列为0120.30.50.2故的数学期望【题目点拨】本小题主要考查频率的计算,考查相互独立事件概率计算,考查离散型随机变量分布列和数学期望的计算,属于中档题.20、(1);(2).【解题分析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果.详解:(1)小陈同学三次投篮都没有命中的概率为(1-)×(1-)×(1-)=;所以小陈同学三次投篮至少命中一次的概率为1-=.(2)ξ可能的取值为0,1,2,1.P(ξ=0)=;P(ξ=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1×)×=;P(ξ=2)=××+××+××=;P(ξ=1)=××=;故随机变量ξ的概率分布为ξ0121P所以数学期望E(ξ)=0×+1×+2×=+1×=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版四年级语文上册第6课《夜间飞行的秘密》精美课件
- 小尾寒羊营养需要量-地方标准草案报批稿
- 二零二四年度航空器材采购租赁合同3篇
- 我的真理观-马克思公开课
- 环状外阴炎病因介绍
- 【大学课件】 企业集团财务战略与管理控制体系
- 《专利英语翻译》课件
- (麦当劳餐饮运营管理资料)更新商业-麦当劳洗手间检查表
- (高考英语作文炼句)第6篇译文老师笔记
- 热力管道施工组织设计
- 金融中的数学分析方法
- (高清版)DZT 0261-2014 滑坡崩塌泥石流灾害调查规范(1:50000)
- 安环部经理岗位职责范本
- 2023年全国统一高考语文试卷(北京卷)(含答案与解析)
- 科普绘本设计理念
- 骨质疏松中医护理常规
- 三年级上册口算练习1000道一附答案
- 合同服务内容和范围规定
- 胃镜室工作总结
- 城市管理综合执法局城管执法与执法程序
- 政府采购评审专家考试题库(完整版)
评论
0/150
提交评论