2024届海口市第十中学数学高二第二学期期末联考试题含解析_第1页
2024届海口市第十中学数学高二第二学期期末联考试题含解析_第2页
2024届海口市第十中学数学高二第二学期期末联考试题含解析_第3页
2024届海口市第十中学数学高二第二学期期末联考试题含解析_第4页
2024届海口市第十中学数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海口市第十中学数学高二第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,其中圆的半径均为,则该几何体的体积为()A. B. C. D.2.已知正方体的棱长为2,P是底面上的动点,,则满足条件的点P构成的图形的面积等于()A. B. C. D.3.设全集U={1,3,5,7},集合M={1,|a-5|},MU,M={5,7},则实数a的值为()A.2或-8 B.-8或-2 C.-2或8 D.2或84.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.5.如图为某几何体的三视图,则该几何体的体积为()A. B. C. D.6.已知点,则点轨迹方程是()A. B.C. D.7.若关于的线性回归方程是由表中提供的数据求出,那么表中的值为()345634A. B. C. D.8.已知,记,则M与N的大小关系是()A. B. C. D.不能确定9.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.10.若随机变量服从正态分布,且,()A. B. C. D.11.某班有50人,从中选10人均分2组(即每组5人),一组打扫教室,一组打扫操场,那么不同的选派法有()A. B. C. D.12.设,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________.14.一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为15.已知命题P:∃x0>0,使得<2,则¬p是_____16.甲、乙两人参加一次英语口语考试,已知在备选的道试题中,甲能答对其中的道,乙能答对其中的道,规定每次考试都从备选题中随机抽出道题进行测试,至少答对道题才算合格,则甲、乙两人至少有一人考试合格的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在长方体中,、分别是棱,上的点,,(1)求异面直线与所成角的余弦值;(2)证明平面(3)求二面角的正弦值.18.(12分)已知(为自然对数的底数),.(1)当时,求函数的极小值;(2)当时,关于的方程有且只有一个实数解,求实数的取值范围.19.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数,)(1)求曲线和直线的普通方程;

(2)设直线和曲线交于两点,求的值.20.(12分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.21.(12分)2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.选择“物理”选择“地理”总计男生10女生25总计附参考公式及数据:,其中.0.050.013.8416.63522.(10分)的内角A,B,C所对的边分别是a,b,c,若,,.(1)求c的值;(2)求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】该几何体为一棱长为6的正方体掏掉一个棱长为2的小正方体,再放置进去一个半径为1的球,所以体积为.故选A.2、A【解题分析】

P是底面上的动点,因此只要在底面上讨论即可,以为轴建立平面直角坐标系,设,根据已知列出满足的关系.【题目详解】如图,以为轴在平面内建立平面直角坐标系,设,由得,整理得,设直线与正方形的边交于点,则点在内部(含边界),易知,,∴,.故选A.【题目点拨】本题考查空间两点间的距离问题,解题关键是在底面上建立平面直角坐标系,把空间问题转化为平面问题去解决.3、D【解题分析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题.研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.4、C【解题分析】分析:△ABC中设AB=c,BC=a,AC=b,由sinB=cosA•sinC结合三角形的内角和及和角的正弦公式化简可求cosC=0即C=90°,再由,S△ABC=6可得bccosA=9,可求得c=5,b=3,a=4,考虑建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1),设则,,由=(x,0)+(0,y)=(x,y)可得x=3λ,y=4﹣4λ则4x+3y=12而,利用基本不等式求解最小值.详解:△ABC中设AB=c,BC=a,AC=b∵sinB=cosA•sinC,∴sin(A+C)=sinCcosA,即sinAcosC+sinCcosA=sinCcosA,∴sinAcosC=0,∵sinA≠0,∴cosC=0C=90°∵,S△ABC=6∴bccosA=9,∴,根据直角三角形可得sinA=,cosA=,bc=15∴c=5,b=3,a=4以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1)设,则,∴=(x,0)+(0,y)=(x,y)∴x=3λ,y=4﹣4λ则4x+3y=12=故所求的最小值为故选C.点睛:本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解把已知所给的是一个单位向量,从而可用x,y表示,建立x,y与λ的关系,解决本题的第二个关键点在于由x=3λ,y=4﹣4λ发现4x+3y=12为定值,从而考虑利用基本不等式求解最小值5、A【解题分析】

根据三视图得出几何体为一个圆柱和一个长方体组合而成,由此求得几何体的体积.【题目详解】由三视图可知,该几何体由圆柱和长方体组合而成,故体积为,故选A.【题目点拨】本小题主要考查三视图还原原图,考查圆柱、长方体体积计算,属于基础题.6、A【解题分析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。7、C【解题分析】由表可得样本中心点的坐标为,根据线性回归方程的性质可得,解出,故选C.8、B【解题分析】

作差并因式分解可得M-N=,由,∈(0,1)可作出判断.【题目详解】由题意可得M-N====,∵,b∈(0,1),∴(b-1)∈(-1,0),(-1)∈(-1,0),∴(b-1)(-1)>0,∴M>N

故选B.【题目点拨】本题考查作差法比较式子大小,涉及因式分解,属基础题.9、C【解题分析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.10、B【解题分析】设,则,根据对称性,,则,即,故故选:B.11、A【解题分析】

根据先分组,后分配的原则得到结果.【题目详解】由题意,先分组,可得,再一组打扫教室,一组打扫操场,可得不同的选派法有.故选A.【题目点拨】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.12、C【解题分析】

利用计算出定积分的值.【题目详解】依题意得,故选C.【题目点拨】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-32【解题分析】

通过对原式x赋值1,即可求得答案.【题目详解】令可得,故答案为-32.【题目点拨】本题主要考查二项式定理中赋值法的理解,难度不大.14、0<r≤1【解题分析】

设小球圆心(0,y0)抛物线上点(x,y)点到圆心距离平方r2=x2+(y﹣y0)2=2y+(y﹣y0)2=y2+2(1﹣y0)y+y02若r2最小值在(0,0)时取到,则小球触及杯底,此二次函数对称轴在纵轴左边,所以1﹣y0≥0所以0<y0≤1所以0<r≤1故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.15、【解题分析】

根据含有量词的命题的否定即可得到结论.【题目详解】命题为特称命题,由特称命题的定义,命题的否定就是对这个命题的结论进行否认.全称特称命题即改变量词,再否定结论可得:命题的否定为:∀x>0,x2,故答案为:∀x>0,x2.【题目点拨】本题主要考查含有量词的命题的否定,全(特)称命题的否定命题的格式和方法,要注意两点:1)全称命题变为特称命题;2)只对结论进行否定.属于基础题.16、【解题分析】

设事件表示甲考试合格,事件表示乙考试合格,计算出、,则甲、乙两人至少有一人考试合格的概率为,由此能求出结果.【题目详解】设事件表示甲考试合格,事件表示乙考试合格,则,.则甲、乙两人至少有一人考试合格的概率为.故答案为:.【题目点拨】本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率公式等基础知识,考查运算求解能力,是中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)见解析(3)【解题分析】方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,,,(1)解:易得,于是所以异面直线与所成角的余弦值为(2)证明:已知,,于是·=0,·=0.因此,,,又所以平面(3)解:设平面的法向量,则,即不妨令X=1,可得.由(2)可知,为平面的一个法向量.于是,从而所以二面角的正弦值为方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由,可知EF∥BC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以,所以异面直线FE与A1D所成角的余弦值为(2)证明:连接AC,设AC与DE交点N因为,所以,从而,又由于,所以,故AC⊥DE,又因为CC1⊥DE且,所以DE⊥平面ACF,从而AF⊥DE.连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为,所以AF⊥平面A1ED(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF,A1N平面ACF,所以DE⊥NF,DE⊥A1N,故为二面角A1-ED-F的平面角易知,所以,又所以,在连接A1C1,A1F在.所以所以二面角A1-DE-F正弦值为18、(1)见解析;(2)见解析【解题分析】

(1)由题意,当时,然后求导函数,分析单调性求得极值;(2)先将原方程化简,然后换元转化成只有一个零点,再对函数进行求导,讨论单调性,利用零点存在性定理求得a的取值.【题目详解】(1)当时,令解得递减极小值递增(2)设,令,,,设,,由得,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,此时在当时,关于的方程有且只有一个实数解.②当,即时,,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解.又时,,单调递增,且,令,,,故在单调递增,又故在单调递增,故,故,又,由零点存在定理可知,.故当时,的方程有两个解为和综上所述:当时的方程有且只有一个实数解【题目点拨】本题主要考查了导函数的应用,讨论单调性和零点的存在性定理是解题的关键点,属于难题.如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.19、(1),(2)【解题分析】【试题分析】(1)先利用直角坐标与极坐标之间的关系将曲线的极坐标方程化为直角坐标方程,运用消参法将直线的参数方程化为直角坐标方程;(2)由于曲线是圆心,半径是,先求圆心到直线的距离是,再运用弦心距、半径、弦长之间的关系求出.解:(1)曲线的极坐标方程可以化为:,所以曲线的普通方程是:即,直线的普通方程是,即;(2)圆心到直线的距离是,所以.20、(1)证明见解析;(2).【解题分析】

过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标.求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值.由向量的数量积运算易求.【题目详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为y轴,为轴,建立空间坐标系,如图,在中,,,,,交于点,,;,,,;(2)由(1)可知,,,设平面BEF的法向量为,所以,,取,,设直线与平面所成角为,所以=.【题目点拨】本题考查证明空间两直线垂直,考查求直线与平面所成的角,解题方法是建立空间直角坐标系,由向量法证明线线垂直,求线面角,这种方法主要考查学生的运算求解能力,思维量很少,解法固定.21、(1)列联表见解析;有的把握认为选择科目与性别有关.(2)分布列见解析;【解题分析】

(1)根据分层抽样,求得抽到男生、女生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论