版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
亳州市重点中学2024届数学高二第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为()A.1,2,…,6 B.1,2,…,7 C.1,2,…,11 D.1,2,3…2.已知一列数按如下规律排列:,则第9个数是()A.-50 B.50 C.42 D.—423.已知关于的实系数一元二次方程的一个根在复平面上对应点是,则这个方程可以是()A. B.C. D.4.若集合,则实数的取值范围是()A. B.C. D.5.已知随机变量的分布列如下表所示:123450.10.20.20.1则的值等于()A.1 B.2 C.3 D.46.为自然对数的底数,已知函数,则函数有唯一零点的充要条件是()A.或或 B.或C.或 D.或7.设M为曲线C:y=2x2+3x+3上的点,且曲线C在点M处切线倾斜角的取值范围为3πA.[-1,+∞) B.-∞,-34 C.-1,-8.下列三句话按“三段论”模式排列顺序正确的是()①是周期函数;②三角函数是周期函数;③是三角函数A.②③① B.②①③ C.①②③ D.③②①9.在中,内角所对应的边分别为,且,若,则边的最小值为()A. B. C. D.10.已知向量,若,则()A. B. C. D.11.设是含数1的有限实数集,是定义在上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能值只能是().A.0 B. C. D.12.已知函数,则使得成立的的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量、满足约束条件,则的最大值为__________.14.已知,则__________________.15.若变量,满足约束条件则的最大值为______.16.定义方程的实数根叫做函数的“新驻点”,如果函数,,()的“新驻点”分别为,,,那么,,的大小关系是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)判断的奇偶性;(2)若在是增函数,求实数的范围.18.(12分)已知函数在处取得极小值1.(1)求的解析式;(2)求在上的最值.19.(12分)函数,.(Ⅰ)求函数的极值;(Ⅱ)若,证明:当时,.20.(12分)已知函数.(1)求的单调区间;(2)设为函数的两个零点,求证:.21.(12分)对某种书籍的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.表中.为了预测印刷20千册时每册的成本费,建立了两个回归模型:.(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷20千册时每册的成本费.附:对于一组数据,其回归方程中斜率和截距的最小二乘估计公式分别为:,.22.(10分)已知椭圆C:x2a2+y2(1)求椭圆C的标准方程;(2)设M为椭圆C的右顶点,过点N(6,0)且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则有可能第一次取出球,也有可能取完6个红球后才取出白球.2、A【解题分析】分析:根据规律从第3个数起,每一个数等于前两个数之差,确定第9个数.详解:因为从第3个数起,每一个数等于前两个数之差,所以第9个数是,选A.点睛:由前几项归纳数列通项的常用方法为:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.3、A【解题分析】
先由题意得到方程的两复数根为,(为虚数单位),求出,,根据选项,即可得出结果.【题目详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,,根据选项可得,该方程为.故选A【题目点拨】本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.4、D【解题分析】
本题需要考虑两种情况,,通过二次函数性质以及即集合性质来确定实数的取值范围。【题目详解】设当时,,满足题意当时,时二次函数因为所以恒大于0,即所以,解得。【题目点拨】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论。5、A【解题分析】分析:由分布列的性质可得,又由数学期望的计算公式求得数学期望,进而可求得.详解:由分布列的性质可得,解得,又由数学期望的计算公式可得,随机变量的期望为:,所以,故选A.点睛:本题主要考查了随机变量的分布列的性质即数学期望的计算问题,其中熟记随机变量的性质和数学期望的计算公式是解答的关键,着重考查了推理与运算能力.6、A【解题分析】
作出函数的图像如图所示,其中,则,设直线与曲线相切,则,即,设,则,当时,,分析可知,当时,函数有极大值也是最大值,,所以当时,有唯一解,此时直线与曲线相切.分析图形可知,当或或时,函数的图像与函数的图像只有一个交点,即函数有唯一零点.故选.【题目点拨】本小题主要考查分段函数的图象与性质,考查函数零点问题的处理方法,考查利用导数求相切时斜率的方法,考查数形结合的数学思想方法.首先画出函数的图象,分段函数的图象注意分界点的位置是实心的函数空心的.然后将函数的零点问题转化为两个函数图象的交点来解决.7、D【解题分析】
求出导函数y',倾斜角的范围可转化为斜率的范围,斜率就是导数值,由可得y'的不等式,解之可得.【题目详解】由题意y'=4x+3,切线倾斜角的范围是[3π4,π),则切线的斜率k∴-1≤4x+3<0,解得-1≤x<-3故选D.【题目点拨】本题考查导数的几何意义:函数在某一点处的导数就是其图象在该点处的切线的斜率.解题时要注意直线倾斜角与直线斜率之间的关系,特别是正切函数的性质.8、A【解题分析】
根据“三段论”的排列模式:“大前提”“小前提”“结论”,分析即可得到正确的顺序.【题目详解】根据“三段论”的排列模式:“大前提”“小前提”“结论”,可知:①是周期函数是“结论”;②三角函数是周期函数是“大前提”;③是三角函数是“小前提”;故“三段论”模式排列顺序为②③①.故选:A【题目点拨】本题考查了演绎推理的模式,需理解演绎推理的概念,属于基础题.9、D【解题分析】
根据由正弦定理可得,由余弦定理可得,利用基本不等式求出,求出边的最小值.【题目详解】根据由正弦定理可得.
由余弦定理可得..即.,
故边的最小值为,
故选D.【题目点拨】本题主要考查了余弦定理、基本不等式的应用,解三角形,属于中档题.10、C【解题分析】
首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【题目详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【题目点拨】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.11、C【解题分析】
先阅读理解题意,则问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,再结合函数的定义逐一检验即可.【题目详解】解:由题意可得:问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,则通过代入和赋值的方法,当时,此时得到圆心角为,然而此时或时,都有2个与之对应,根据函数的定义,自变量与应变量只能“一对一”或“多对一”,不能“一对多”,因此,只有当时,此时旋转,满足一个对应一个,所以的可能值只能是,故选:C.【题目点拨】本题考查了函数的定义,重点考查了函数的对应关系,属基础题.12、A【解题分析】
由已知可得:是偶函数,当时,在为增函数,利用的单调性及奇偶性将转化成:,解得:,问题得解.【题目详解】因为所以是偶函数.当时,又在为增函数,在为减函数所以在为增函数所以等价于,解得:故选:A【题目点拨】本题主要考查了函数单调性及奇偶性的应用,还考查了转化思想及函数单调性的判断,属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】
首先画出可行域,然后确定目标函数的最大值即可.【题目详解】绘制不等式组表示的可行域如图所示,结合目标函数的几何意义可得目标函数在点处取得最大值,其最大值为:.【题目点拨】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.14、-13【解题分析】
由题意可得:.15、9.【解题分析】分析:画出可行域,然后结合目标函数求最值即可.详解:作出如图所示可行域:可知当目标函数经过点A(2,3)时取得最大值,故最大值为9.点睛:考查简单的线性规划的最值问题,准确画出图形,画出可行域确定最优解是解题关键,属于基础题.16、【解题分析】试题分析:,由,得;,由,得由,,由零点存在定理得;,由得,即,,考点:1、新定义的应用;2、零点存在定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,为偶函数,当时,既不是奇函数,也不是偶函数,;(2).【解题分析】
(1)当时,,对任意,,为偶函数.当时,,取,得,,函数既不是奇函数,也不是偶函数.(2)设,,要使函数在上为增函数,必须恒成立.,即恒成立.又,.的取值范围是.18、(1)(2)最小值为1,最大值为2.【解题分析】
(1)利用导数,结合在处取得极小值1,求得的值,由此求得解析式.(2)根据在区间上的单调性,结合函数的极值以及区间端点的函数值,求得在区间上的最值.【题目详解】(1),由,得或.当时,,则在上单调递增,在上单调递减,符合题意,由,得;当时,,则在上单调递增,在上单调递减,在处取得极大值,不符合题意.所以.(2)由(1)知在上单调递增,在上单调递减,因为,所以的最小值为1,最大值为2.【题目点拨】本小题主要考查利用导数研究函数的极值,考查利用导数研究函数的最值,属于基础题.19、(Ⅰ)有极小值,无极大值.(Ⅱ)证明见解析.【解题分析】试题分析:(1)求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值;(2)不等式等价于,由(1)得,可得,设,利用导数研究函数的单调性,根据单调性可得,进而可得结果.试题解析:(1)函数的定义域为,,由得,得,所以函数在单调递减,在上单调递增,所以函数只有极小值.(2)不等式等价于,由(1)得:.所以,,所以.令,则,当时,,所以在上为减函数,因此,,因为,所以,当时,,所以,而,所以.20、(1)的单调递减区间为,单调递增区间为.(2)见证明,【解题分析】
(1)利用导数求函数单调区间的一般步骤即可求出;(2)将零点问题转化成两函数以及图像的交点问题,通过构造函数,依据函数的单调性证明即可。【题目详解】解:(1)∵,∴.当时,,即的单调递减区间为,无增区间;当时,,由,得,当时,;当时,,∴时,的单调递减区间为,单调递增区间为.(2)证明:由(1)知,的单调递减区间为,单调递增区间为,不妨设,由条件知即构造函数,则,由,可得.而,∴.知在区间上单调递减,在区间单调递增,可知,欲证,即证.考虑到在上递增,只需证,由知,只需证.令,则.所以为增函数.又,结合知,即成立,所以成立.【题目点拨】本题考查了导数在函数中的应用,求函数的单调区间,以及函数零点的常用解法,涉及到分类讨论和转化与化归等基本数学思想,意在考查学生的逻辑推理、数学建模和运算能力。21、(1)模型更可靠.(2),1.6【解题分析】分析:(1)根据散点图的形状得到选择模型更可靠.(2)令,则建立关于的线性回归方程,求得关于的线性回归方程为,再求出求关于的回归方程,令x=20,求出的值,得到印刷20千册时每册的成本费.详解:(1)由散点图可以判断,模型更可靠.(2)令,则建立关于的线性回归方程,则,∴∴关于的线性回归方程为,因此,关于的回归方程为当时,该书每册的成本费元.点睛:(1)本题主要考查线性回归方程的求法,考查非线性回归方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)建立非线性回归模型的基本步骤:①确定研究对象,明确哪个是解释变量,哪个是预报变量;②画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在非线性关系);③由经验确定非线性回归方程的类型(如我们观察到数据呈非线性关系,一般选用反比例函数、指数函数、对数函数模型等);④通过换元,将非线性回归方程模型转化为线性回归方程模型;⑤按照公式计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省高安第二中学2025届高考数学一模试卷含解析
- 2025届江西省南昌市第八中学高考数学四模试卷含解析
- 山西省朔州市应县一中2025届高三3月份第一次模拟考试数学试卷含解析
- 2024年度数据保密与合规审查合同协议3篇
- 广东省韶关市曲江区2023-2024学年二年级上学期数学期末试卷
- 2024年平板车租赁与建筑行业运输服务合同3篇
- 餐饮供餐合同
- 2024年度虞姣离婚财产分割与子女教育支持合同3篇
- 信阳农林学院《化学方法论》2023-2024学年第一学期期末试卷
- 信阳航空职业学院《表演(独幕剧)》2023-2024学年第一学期期末试卷
- 2024版短视频IP打造与授权运营合作协议3篇
- 小学生防诈骗安全教育内容
- 2024-2025学年上学期深圳初中地理七年级期末模拟卷3
- 中国当代文学专题-003-国开机考复习资料
- 2024年广东公需科目答案
- 中国马克思主义与当代思考题(附答案)
- (新版)征信知识竞赛基础题库(500题)
- 国内外有关生产流程优化研究发展现状
- 高标准基本农田土地整治项目工程施工费预算表
- 肺栓塞的护理PPT课件
- 高速公路施工安全布控图
评论
0/150
提交评论