版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省临沂市罗庄区数学高二下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增2.已知是等差数列的前n项和,且,则的通项公式可能是()A. B. C. D.3.若为虚数单位,则()A. B. C. D.4.为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是A.4 B.3 C.2 D.15.在某次试验中,实数的取值如下表:013561.35.67.4若与之间具有较好的线性相关关系,且求得线性回归方程为,则实数的值为()A.1.5 B.1.6 C.1.7 D.1.96.已知随机变量服从正态分布,则等于()A. B. C. D.7.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.8.设函数的极小值为,则下列判断正确的是A. B.C. D.9.在“一带一路”的知识测试后甲、乙、丙三人对成绩进行预测.甲:我的成绩最高.乙:我的成绩比丙的成绩高丙:我的成绩不会最差成绩公布后,三人的成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序可能为()A.甲、丙、乙 B.乙、丙、甲C.甲、乙、丙 D.丙、甲、乙10.设等差数列的公差为d,若数列为递减数列,则()A. B. C. D.11.设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减12.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线上存在关于直线成轴对称的两点,则的取值范围是__________.14.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是__________.15.已知集合,,则_______.16.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为的正四面体的内切球半径为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数满足,其中.(1)求的值及的最小正周期;(2)当时,求的最值.18.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;(Ⅱ)若,求的值.19.(12分)已知函数.(1)求函数的定义域并判断奇偶性;(2)若,求实数m的取值范围.20.(12分)如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心(1)求证:平面平面;(2)若,求二面角的余弦值.21.(12分)设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.22.(10分)函数.(1)当时,求不等式的解集;(2)若不等式的解集为空集,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.2、D【解题分析】
由等差数列的求和公式,转化为,故,分析即得解【题目详解】由题意,等差数列,且可得故所以当时,则的通项公式可能是故选:D【题目点拨】本题考查了等差数列的通项公式和求和公式,考查了学生概念理解,数学运算的能力,属于中档题.3、D【解题分析】
根据复数的除法运算法则,即可求出结果.【题目详解】.故选D【题目点拨】本题主要考查复数的除法运算,熟记运算法则即可,属于基础题型.4、B【解题分析】
根据几何概率的计算公式可求,向正方形内随机投掷点,落在阴影部分的概率,即可得出结论.【题目详解】本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内,而有200个点落在阴影部分,可知阴影部分的面积.故选:B.【题目点拨】本题考查的是一个关于几何概型的创新题,属于基础题解决此类问题的关键是读懂题目意思,然后与学过的知识相联系转化为熟悉的问题.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.5、D【解题分析】
根据表中数据求得,代入回归直线方程即可求得结果.【题目详解】由表中数据可知:,又,解得:本题正确选项:【题目点拨】本题考查利用回归直线求解数据的问题,关键是明确回归直线恒过点,属于基础题.6、D【解题分析】
根据正态分布的性质求解.【题目详解】因为随机变量服从正态分布,所以分布列关于对称,又所有概率和为1,所以.故选D.【题目点拨】本题考查正态分布的性质.7、B【解题分析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.8、D【解题分析】
对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【题目详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【题目点拨】本题考查利用导数判断单调性和极值的关系,属于中档题.9、D【解题分析】
假设一个人预测正确,然后去推导其他两个人的真假,看是否符合题意.【题目详解】若甲正确,则乙丙错,乙比丙成绩低,丙成绩最差,矛盾;若乙正确,则甲丙错,乙比丙高,甲不是最高,丙最差,则成绩由高到低可为乙、甲、丙;若丙正确,则甲乙错,甲不是最高,乙比丙低,丙不是最差,排序可为丙、甲、乙.A、B、C、D中只有D可能.故选D.【题目点拨】本题考查合情推理,抓住只有一个人预测正确是解题的关键,属于基础题.10、C【解题分析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.11、D【解题分析】f(x)的最小正周期为2π,易知A正确;f=cos=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.故选D.12、B【解题分析】
由渐近线方程得出的值,结合可求得【题目详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【题目点拨】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
假设存在对称的两个点P,Q,利用两点关于直线成轴对称,可以设直线PQ的方程为,由于P、Q两点存在,所以方程组有两组不同的实数解,利用中点在直线上消去参数,建立关于的函数关系,求出变量的范围.【题目详解】设抛物线上关于直线对称的两相异点为、,线段PQ的中点为,设直线PQ的方程为,由于P、Q两点存在,所以方程组有两组不同的实数解,即得方程①判别式②.可得,,∵,∴⇒…③由②③可得,故答案为.【题目点拨】本题考查了直线与抛物线的位置关系,以及对称问题,属于中档题.14、【解题分析】分析:令y′≥1在(1,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的范围.详解:y′=+2ax,x∈(1,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥1在(1,+∞)上恒成立,∴a≥﹣恒成立,x∈(1,+∞).令f(x)=﹣,x∈(1,+∞),则f(x)在(1,+∞)上单调递增,又f(x)=﹣<1,∴a≥1.故答案为:.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.15、【解题分析】
集合,是数集,集合的交集运算求出公共部分.【题目详解】,,故答案为:【题目点拨】本题考查集合交集运算.交集运算口诀:“越交越少,公共部分”.16、【解题分析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径.详解:设正四面体的内切球半径为,各面面积为,所以.点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为3,最小值为.【解题分析】
(1)代入即可得到的值,化简整理,利用周期公式即可得到答案;(2)当,利用第一问求得的解析式分析可得到最值.【题目详解】解:(1)由,得,解得所以函数的最小正周期(2)当时,,所以的最大值为3,最小值为.【题目点拨】本题主要考查三角函数中周期的计算,最值的计算,意在考查学生的基础知识,难度不大.18、(Ⅰ),(Ⅱ).【解题分析】试题分析:(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为.(Ⅱ)由直线参数方程几何意义有,因此将直线的参数方程代入曲线的直角坐标方程中,得,由韦达定理有.解之得:或(舍去)试题解析:(Ⅰ)由得,∴曲线的直角坐标方程为.直线的普通方程为.(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,得,设两点对应的参数分别为,则有.∵,∴,即.∴.解之得:或(舍去),∴的值为.考点:极坐标方程化为直角坐标,参数方程化普通方程,直线参数方程几何意义19、(1)见解析;(2)或.【解题分析】
(1)由,求得x的范围,可得函数y=f(x)定义域,由函数y=f(x)的定义域关于原点对称,且满足f(﹣x)=f(x),可得函数y=f(x)为偶函数;(2)化简函数f(x)的解析式为所,结合函数的单调性可得,不等式等价于,由此求得m的范围.【题目详解】(1)由得,所以的定义域为,又因为,所以偶函数.(2)因为所以是[0,3)上的减函数,又是偶函数.故解得或.【题目点拨】本题主要考查求函数的定义域,函数的奇偶性的判断,复合函数的单调性,属于中档题.20、(1)见解析(2).【解题分析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.21、(1)(2)【解题分析】
(1)根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集;(2)因为,得,再利用绝对值的定义,去掉绝对值号,即可求解。【题目详解】(1)因为,所以的解集为.(2)因为,所以,即,则,所以.【题目点拨】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术体操用带细分市场深度研究报告
- 装载机产品供应链分析
- 商务礼仪攻略秘籍-提升个人形象与职场成功率
- 窗用纸制室内遮帘商业机会挖掘与战略布局策略研究报告
- 化妆用防晒制剂产品供应链分析
- 纸板杯市场分析及投资价值研究报告
- 物镜光学产品供应链分析
- 广告设计行业经营分析报告
- 电感线圈支架产品供应链分析
- 常压潜水服出租行业营销策略方案
- 上海交大介绍
- 波谱解析试题及答案大全
- PWI在颅脑病变的临床应用
- 26个英文字母大小写打印
- 环氧乙烷生产安全
- 江西景德镇市2023-2023学年八年级数学上期中质量试卷含答案
- 2023年农业综合行政执法理论考试题库(含答案)
- GB/T 24183-2021金属材料薄板和薄带制耳试验方法
- 2023年历年经济学00800自考试题及答案
- 教师师德师风负面清单
- 2023年武汉市中考英语试卷详解(完整版)
评论
0/150
提交评论