版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省巩义市市直高中2024届高二数学第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若均为单位向量,且,则的最小值为()A. B.1 C. D.2.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.2103.若复数在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.4.已知函数,的图象分别与直线交于两点,则的最小值为
A. B. C. D.5.设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为()A. B.2 C. D.16.设,则二项式展开式的常数项是()A.1120 B.140 C.-140 D.-11207.若函数fx=3sinπ-ωx+sin5π2+ωx,且fA.2kπ-2π3C.kπ-5π128.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.49.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.10.函数是()A.偶函数且最小正周期为2 B.奇函数且最小正周期为2C.偶函数且最小正周期为 D.奇函数且最小正周期为11.()A.+2 B.+4 C.+2 D.+412.当时,总有成立,则下列判断正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过双曲线的右焦点F作一条垂直于x轴的垂线交双曲线C的两条渐近线于A、B两点,O为坐标原点,则的面积的最小值为________.14.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:,,,,则销量每增加1千箱,单位成本约下降________元(结果保留5位有效数字).附:回归直线的斜率和截距的最小二乘法公式分别为:,.15.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.16.若对一切实数,不等式恒成立,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:统计信息汽车行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路公路(注:毛利润销售商支付给水产养殖基地的费用运费)(Ⅰ)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望.(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?18.(12分)已知直线的参数方程:(为参数),曲线的参数方程:(为参数),且直线交曲线于,两点.(1)将曲线的参数方程化为普通方程,并求时,的长度;(2)已知点,求当直线倾斜角变化时,的范围.19.(12分)已知10件不同产品中有3件是次品,现对它们一一取出(不放回)进行检测,直至取出所有次品为止.(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,则这样的不同测试方法数有多少?(2)若恰在第6次取到最后一件次品,则这样的不同测试方法数是多少?20.(12分)如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.(l)求椭圆的标准方程;(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.21.(12分)某超市举办酬宾活动,单次购物超过元的顾客可参与一次抽奖活动,活动规则如下:盒子中装有大小和形状完全相同的个小球,其中个红球、个白球和个黑球,从中不放回地随机抽取个球,每个球被抽到的机会均等.每抽到个红球记分,每抽到个白球记分,每抽到个黑球记分.如果抽取个球总得分分可获得元现金,总得分低于分没有现金,其余得分可获得元现金.(1)设抽取个球总得分为随机变量,求随机变量的分布列;(2)设每位顾客一次抽奖获得现金元,求的数学期望.22.(10分)在区间上任取一个数记为a,在区间上任取一个数记为b.若a,,求直线的斜率为的概率;若a,,求直线的斜率为的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
∴则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.2、C【解题分析】
由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【题目详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【题目点拨】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.3、A【解题分析】,所以,选A.4、B【解题分析】由题意,,其中,,且,所以.令,则,为增函数.令,得.所以.时,时,所以在上单调递减,在上单调递增.所以时,.故选B.点睛:本题的解题关键是将要求的量用一个变量来表示,进而利用函数导数得到函数的单调性求最值,本题中有以下几个难点:(1)多元问题一元化,本题中涉及的变量较多,设法将多个变量建立等量关系,进而得一元函数式;(2)含绝对值的最值问题,先研究绝对值内的式子的范围,最后再加绝对值处理.5、D【解题分析】
设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值.【题目详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D.【题目点拨】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题.6、A【解题分析】
分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.7、A【解题分析】
本题首先要对三角函数进行化简,再通过α-β的最小值是π2推出函数的最小正周期,然后得出ω【题目详解】fx==3sin=2sin再由fα=2,fβ=0,α-β的最小值是fx=2sinx+x∈2kπ-2π3【题目点拨】本题需要对三角函数公式的运用十分熟练并且能够通过函数图像的特征来求出周期以及增区间.8、C【解题分析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.9、B【解题分析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.10、C【解题分析】
首先化简为,再求函数的性质.【题目详解】,是偶函数,故选C.【题目点拨】本题考查了三角函数的基本性质,属于简单题型.11、A【解题分析】
根据题意,先利用定积分性质可得,,然后利用微积分基本定理计算,利用定积分的几何意义计算,即可求出答案。【题目详解】因为,,,所以,故选A。【题目点拨】本题主要考查利用定积分的性质、几何意义以及微积分基本定理计算定积分。12、C【解题分析】
构造函数,然后判断的单调性,然后即可判断的大小.【题目详解】令,则所以在上单调递增因为当时,总有成立所以当时,所以故选:C【题目点拨】解答本题的关键是要善于观察条件中式子的特点,然后构造出函数.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
求得双曲线的b,c,求得双曲线的渐近线方程,将x=c代入双曲线的渐近线方程,可得A,B的坐标,求得△OAB的面积,运用基本不等式可得最小值.【题目详解】解:双曲线C:1的b=2,c2=a2+4,(a>0),设F(c,0),双曲线的渐近线方程为y=±x,由x=c代入可得交点A(c,),B(c,),即有△OAB的面积为Sc•=2•2(a)≥41,当且仅当a=2时,△OAB的面积取得最小值1.故答案为:1.【题目点拨】本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查三角形的面积的最值求法,注意运用基本不等式,考查运算能力,属于中档题.14、1.8182【解题分析】
根据所给的数据和公式可以求出回归直线方程,根据回归直线斜率的意义可以求出销量每增加1千箱,单位成本约下降多少元.【题目详解】由所给的数据和公式可求得:,,所以线性回归方程为:,所以销量每增加1千箱,单位成本约下降元.故答案为:1.8182【题目点拨】本题考查了求线性回归方程,考查了直线斜率的意义,考查了数学运算能力.15、【解题分析】
由已知棱柱体积与棱锥体积可得S到下底面距离与棱柱高的关系,进一步得到S到上底面距离与棱锥高的关系,则答案可求.【题目详解】设三棱柱的底面积为,高为,则,再设到底面的距离为,则,得,所以,则到上底面的距离为,所以三棱锥的体积为.故答案为1.【题目点拨】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为,本题是中档题.16、【解题分析】
当时,不等式显然成立;当时,不等式恒成立等价于恒成立,运用基本不等式可得的最小值,从而可得的范围.【题目详解】当时,不等式显然成立;当时,不等式恒等价于恒成立,由,当且仅当时,上式取得等号,即有最小值,所以,故答案为【题目点拨】本题考查不等式恒成立问题、分类讨论思想和分离参数的应用以及基本不等式求最值,属于中档题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析,万元;(Ⅱ)走公路可让水产养殖基地获得更多利润.【解题分析】试题分析:(Ⅰ)根据题意得到不堵车时万元,堵车时万元,结合题目中给出的概率得到随机变量的分布列,求得万元。(Ⅱ)设设走公路利润为,同(Ⅰ)中的方法可得到随机变量的分布列,求得万元,故应选择走公路可让水产养殖基地获得更多利润。试题解析:(I)由题意知,不堵车时万元,堵车时万元。∴随机变量的分布列为∴万元.(II)设走公路利润为,由题意得,不堵车时万元,万元,∴随机变量的分布列为:∴万元,∴.∴走公路可让水产养殖基地获得更多利润.18、(1)(2)【解题分析】分析:(1)联立直线和椭圆方程得到,∴,由点点距离公式得到AB的长度;(2)联立直线和椭圆得到t的二次方程,根据韦达定理得到,进而得到范围.详解:(1)曲线的参数方程:(为参数),曲线的普通方程为.当时,直线的方程为,代入,可得,∴.∴;(2)直线参数方程代入,得.设对应的参数为,∴.点睛:这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.19、(1);(2).【解题分析】
(1)根据题意,分析可得前4次取出的都是正品,第5次和第10次中取出2件次品,剩余的4个位置任意排列,由排列数公式计算可得答案;(2)根据题意,分析可得若第6次为最后一件次品,另2件在前5次中出现,前5次中有3件正品,由排列、组合数公式计算可得答案.【题目详解】解:(1)根据题意,若恰在第5次取到第一件次品,第10次才取到最后一件次品,则前4次取出的都是正品,第5次和第10次中取出2件次品,剩余的4个位置任意排列,则有种不同测试方法,(2)若第6次为最后一件次品,另2件在前5次中出现,前5次中有3件正品,则不同的测试方法有种.【题目点拨】本题考查排列、组合的应用,注意优先分析受到限制的元素、位置,属于基础题.20、(1)(2)见解析【解题分析】分析:(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质,,列出关于、的方程组,求出、,即可得椭圆的标准方程;(2)可设直线的方程为,联立得,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.详解:(1)因为点到椭圆的两焦点的距离之和为,所以,解得.又椭圆经过点,所以.所以.所以椭圆的标准方程为.证明:(2)因为线段的中垂线的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术体操用带细分市场深度研究报告
- 装载机产品供应链分析
- 商务礼仪攻略秘籍-提升个人形象与职场成功率
- 窗用纸制室内遮帘商业机会挖掘与战略布局策略研究报告
- 化妆用防晒制剂产品供应链分析
- 纸板杯市场分析及投资价值研究报告
- 物镜光学产品供应链分析
- 广告设计行业经营分析报告
- 电感线圈支架产品供应链分析
- 常压潜水服出租行业营销策略方案
- 2024年中国两轮电动车社区充电行业研究报告 -头豹
- 建筑工地突发事件处理预案
- 国网新安规培训考试题及答案
- 医学教程 胆囊癌诊治课件
- 5.1+走近老师(课件)2024-2025学年七年级道德与法治上册统编版
- 湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)
- 山西省运城市2024-2025学年高二上学期10月月考英语试题
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
- 【班主任工作】2024-2025学年秋季安全主题班会教育周记录
- 2024年云南合和(集团)股份限公司招聘3人高频500题难、易错点模拟试题附带答案详解
- 2024-2030年街舞培训行业市场发展分析及发展趋势前景预测报告
评论
0/150
提交评论