![2024届湖南省洞口县九中数学高二下期末经典试题含解析_第1页](http://file4.renrendoc.com/view11/M03/19/07/wKhkGWW-i0qAJ0E6AAInxY4KYgs120.jpg)
![2024届湖南省洞口县九中数学高二下期末经典试题含解析_第2页](http://file4.renrendoc.com/view11/M03/19/07/wKhkGWW-i0qAJ0E6AAInxY4KYgs1202.jpg)
![2024届湖南省洞口县九中数学高二下期末经典试题含解析_第3页](http://file4.renrendoc.com/view11/M03/19/07/wKhkGWW-i0qAJ0E6AAInxY4KYgs1203.jpg)
![2024届湖南省洞口县九中数学高二下期末经典试题含解析_第4页](http://file4.renrendoc.com/view11/M03/19/07/wKhkGWW-i0qAJ0E6AAInxY4KYgs1204.jpg)
![2024届湖南省洞口县九中数学高二下期末经典试题含解析_第5页](http://file4.renrendoc.com/view11/M03/19/07/wKhkGWW-i0qAJ0E6AAInxY4KYgs1205.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省洞口县九中数学高二下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的偶函数满足,当时,,设函数,,则与的图象所有交点的横坐标之和为()A.3 B.4 C.5 D.62.已知三棱锥的所有顶点都在球的球面上,,,若三棱锥体积的最大值为2,则球的表面积为()A. B. C. D.3.设全集,,,则等于()A. B. C. D.4.设是可导函数,且满足,则曲线在点处的切线斜率为()A.4 B.-1 C.1 D.-45.水以恒速(即单位时间内注入水的体积相同)注入下面的容器中,则此容器里水的高度与时间的函数关系图象是()A. B. C. D.6.若复数满足为虚数单位),则()A. B. C. D.7.有件产品,其中件是次品,从中任取件,若表示取得次品的件数,则()A. B. C. D.8.设函数,则“”是“有4个不同的实数根”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件9.已知函数,则函数的单调递增区间是()A.和 B.和C.和 D.10.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●个数是()A.10 B.9 C.8 D.1111.已知随机变量,若,则的值为()A.0.1 B.0.3 C.0.6 D.0.412.在一次试验中,测得的四组值分别是,,,,则与之间的线性回归方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数是.(用数字填写答案)14.已知随机变量,则的值为__________.15.在1x-116.平面向量a与b的夹角为45∘,a=1,-1,→=1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆的方程:(2)若是椭圆上的动点,求的取值范围;(3)直线:与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.18.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据(1)求(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(附:,,,,其中,为样本平均值)19.(12分)在直角坐标系中,直线的参数方程为(为参数).再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.在该极坐标系中圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点、,若点的坐标为,求的值.20.(12分)已知函数.(I)求的减区间;(II)当时,求的值域.21.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最大值,若实数满足,求的最小值.22.(10分)已知曲线的参数方程是为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别是、,直线与曲线相交于P、Q两点,射线OP与曲线相交于点A,射线OQ与曲线相交于点B,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据题意,分析可得函数与的图象都关于直线对称,作出两个函数图象,分析其交点情况即可得到答案.【题目详解】由题意,函数满足可知,函数的图象关于直线对称,又函数为偶函数,所以函数的图象关于轴对称,由函数可知,函数的图象关于直线对称,画出函数与的图象如图所示:设图中四个交点的横坐标为,由图可知,,所以函数与的图象所有交点的横坐标之和为4.故选:B【题目点拨】本题考查函数的奇偶性和对称性、指数函数的图象与性质;考查数形结合思想和运算求解能力;利用函数的奇偶性和对称性作出函数图象是求解本题的关键;属于综合型、难度大型试题.2、D【解题分析】分析:根据棱锥的最大高度和勾股定理计算球的半径,从而得出外接球的表面积.详解:因为,所以,过的中点作平面的垂下,则球心在上,设,球的半径为,则棱锥的高的最大值为,因为,所以,由勾股定理得,解得,所以球的表面积为,故选D.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.3、B【解题分析】
直接利用补集与交集的运算法则求解即可.【题目详解】解:∵集合,,,由全集,.故选:B.【题目点拨】本题考查了交、并、补集的混合运算,是基础知识的考查.4、D【解题分析】
由已知条件推导得到f′(1)=-4,由此能求出曲线y=f(x)在(1,f(1))处切线的斜率.【题目详解】由,得,∴曲线在点处的切线斜率为-4,故选:D.【题目点拨】本题考查导数的几何意义及运算,求解问题的关键,在于对所给极限表达式进行变形,利用导数的几何意义求曲线上的点的切线斜率,属于基础题.5、C【解题分析】分析:根据容器的特征,结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断.结合函数图像分析判别可得结论.详解:A、B选项中:函数图象是单调递增的,与与题干不符,故排除;C、当注水开始时,函数图象往下凸,可得出下方圆台容器下粗上细,符合题意.;D、当注水时间从0到t时,函数图象往上凸,可得出下方圆台容器下细上粗,与题干不符,故排除.故选C.点睛:本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h和时间t之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想.6、A【解题分析】
根据复数的除法运算可求得;根据共轭复数的定义可得到结果.【题目详解】由题意得:本题正确选项:【题目点拨】本题考查共轭复数的求解,关键是能够利用复数的除法运算求得,属于基础题.7、B【解题分析】
由题意,知取0,1,2,3,利用超几何分布求出概率,即可求解.【题目详解】根据题意,故选:B.【题目点拨】本题考查利用超几何分布求概率,属基础题.8、B【解题分析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,,,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,,,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.9、C【解题分析】
先求出函数的定义域,再求导,根据导数大于0解得x的范围,继而得到函数的单调递增区间.【题目详解】函数f(x)=x2-5x+2lnx的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得0<x<或x>2,故函数f(x)的单调递增区间是,(2,+∞).故选C【题目点拨】本题考查了导数和函数的单调性的关系,易错点是注意定义域,属于基础题.10、B【解题分析】将圆分组:第一组:○●,有个圆;第二组:○○●,有个圆;第三组:○○○●,有个,…,每组圆的总个数构成了一个等差数列,前组圆的总个数为,令,解得,即包含整组,故含有●的个数是个,故选B.【方法点睛】本题考查等差数列的求和公式及归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.11、D【解题分析】
根据题意随机变量可知其正态分布曲线的对称轴,再根据正态分布曲线的对称性求解,即可得出答案.【题目详解】根据正态分布可知,故.故答案选D.【题目点拨】本题主要考查了根据正态分布曲线的性质求指定区间的概率.12、D【解题分析】
根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.【题目详解】∴这组数据的样本中心点是
把样本中心点代入四个选项中,只有成立,
故选D.【题目点拨】本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题意,二项式展开的通项,令,得,则的系数是.考点:1.二项式定理的展开式应用.14、【解题分析】
根据二项分布的期望公式求解.【题目详解】因为随机变量服从二项分布,所以.【题目点拨】本题考查二项分布的性质.15、1【解题分析】
先求出二项式x+1【题目详解】二项式x+15的展开式的通项为∴1x-1x故答案为1.【题目点拨】对于含有两个括号的展开式的项的问题,求解时可分别求出每个二项式的展开式的通项,然后采用组合(即“凑”)的方法得到所求的项,解题时要做到细致、不要漏掉任何一种情况.16、10.【解题分析】
分析:先计算|a|,再利用向量模的公式求详解:由题得|a所以a故答案为:10.点睛:(1)本题主要考查向量的模的计算,意在考查学生对这些知识的掌握水平和基本计算能力.(2)若a=(x,y),则a三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)是定值,为0.【解题分析】
(1)由题意可知:,解这个方程组即可;(2)把椭圆的方程化为参数方程,根据辅助角公式可以求出的取值范围;(3)直线方程与椭圆的标准方程联立,利用根与系数关系,可以判断出为定值.【题目详解】(1)因为以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.所以有,解得,所以椭圆的方程为:(2)椭圆椭圆的参数方程为:(为参数且).因为是椭圆上的动点,所以,其中..(3)设,则,.直线:与椭圆的方程联立为:消去得,由根与系数关系可得:直线的方程为:,令,因为,所以.。.【题目点拨】本题考查了求椭圆的标准方程,考查了椭圆参数方程的应用,考查了直线与椭圆的位置关系,考查了数学运算能力.18、(1);(2);(3)19.65【解题分析】分析:(1)根据最小二乘法,求得,进而得到,即可得到回归直线的方程;(2)由(1)中的回归直线方程,即可求解求解技前生产100吨甲产品的能耗,进而求得降低的生产能耗.详解:(1)由知:,所以由最小二乘法确定的回归方程的系数为:,因此,所求的线性回归方程为.(3)由1的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:(吨标准煤).点睛:本题主要考查了回归直线方程的求解以及回归直线方程的应用,其中利用最小二乘法准确计算和的值是解答的关键,着重考查了考生的推理与运算能力.19、(1)(2)【解题分析】试题分析:(1)由可将圆的极坐标方程化为直角坐标方程;(2)先将直线的参数方程代入圆C方程,再根据参数几何意义得,最后根据韦达定理求的值.试题解析:(1);(2)直线的参数方程代入圆C方程得.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cosα,y0+t1sinα),(x0+t2cosα,y0+t2sinα).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.20、(I)(II)【解题分析】
(I)对函数进行求导,求出导函数小于零时,的取值范围即可。(II)利用导数求出函数的增区间,结合(1),判断当时,函数的单调性,然后求出最值。【题目详解】解:(I)由函数,求导当,解得即的减区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代网络教育技术的优势与挑战
- 环境保护技术的创新及其商业模式研究
- 深化绿色能源技术教育的重要性
- 国庆节洋酒活动方案设计
- 充电桩设备安装施工方案
- 15 可亲可敬的家乡人1(说课稿)2024-2025学年统编版道德与法治二年级上册
- many、much、a lot of(说课稿)-2023-2024学年译林版(三起)英语六年级下册
- 11屹立在世界的东方 自力更生 扬眉吐气 说课稿-2023-2024学年道德与法治五年级下册统编版
- 2024-2025学年高中历史 专题六 穆罕默德 阿里改革 一 亟待拯救的文明古国(1)教学说课稿 人民版选修1001
- 2023九年级数学上册 第二十一章 一元二次方程21.3 实际问题与一元二次方程第3课时 实际问题与一元二次方程(3)说课稿(新版)新人教版
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 完整2024年开工第一课课件
- 货运车辆驾驶员安全培训内容资料完整
- 高一学期述职报告
- 风神汽车4S店安全生产培训课件
- ICU患者的体位转换与床旁运动训练
- 人教版四年级上册竖式计算200题及答案
- 建设工程工作总结报告
- 脾破裂术后健康宣教课件
- 三废环保管理培训
- 藏族唐卡艺术特色分析
评论
0/150
提交评论