2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省东莞市第四高级中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下几个命题中:①线性回归直线方程恒过样本中心;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.其中真命题的个数为()A.1个 B.2个 C.3个 D.4个2.设复数满足,则()A. B. C. D.3.如图,直线:与双曲线:的右支交于,两点,点是线段的中点,为坐标原点,直线交双曲线于,两点,其中点,,在双曲线的同一支上,若双曲线的实轴长为4,,则双曲线的离心率为()A. B. C. D.4.给出下列四个命题,其中真命题的个数是()①回归直线y=bx+a②“x=6”是“x2③“∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”也是真命题.A.0B.1C.2D.35.参数方程(θ∈R)表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线6.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β.其中真命题的个数为()A.1B.2C.3D.47.已知随机变量,且,则()A.1.25 B.1.3 C.1.75 D.1.658.已知函数的最大值为,周期为,给出以下结论:①的图象过点;②在上单调递减;③的一个对称中心是;④的一条对称轴是.其中正确结论的个数为()A.1 B.2 C.3 D.49.已知集合则A.[2,3] B.(-2,3] C.[1,2) D.10.已知曲线在点处的切线方程是,且的导函数为,那么等于A. B. C. D.11.在空间给出下列四个命题:①如果平面内的一条直线垂直于平面内的任意一条直线,则⊥;②如果直线与平面内的一条直线平行,则∥;③如果直线与平面内的两条直线都垂直,则⊥;④如果平面内的两条直线都平行于平面,则∥.其中正确的个数是A. B. C. D.12.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π二、填空题:本题共4小题,每小题5分,共20分。13.现在“微信抢红包”异常火爆.在某个微信群某次进行的抢红包活动中,若所发红包的总金额9元,被随机分配为元,元,元,元,元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于5元的概率是__________.14.已知函数f(x)=是R上的增函数,则实数k的取值范围是________.15.已知函数满足条件,对于,存在唯一的,使得,当成立时,则实数__________.16.已知随机变量服从二项分布,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题实数满足(其中),命题方程表示双曲线.(I)若,且为真命题,求实数的取值范围;(Ⅱ)若是的必要不充分条件,求实数的取值范围.18.(12分)为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市年与年这两年销售量前名的五个奶粉的销量(单位:罐),绘制出如下的管状图:(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名(由高到低,不用说明理由);(2)已知该超市年奶粉的销量为(单位:罐),以,,这年销量得出销量关于年份的线性回归方程为(,,年对应的年份分别取),求此线性回归方程并据此预测年该超市奶粉的销量.相关公式:.19.(12分)已知函数.(Ⅰ)求函数处的切线方程;(Ⅱ)时,.20.(12分)甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.21.(12分)对任意正整数n,设表示n的所有正因数中最大奇数与最小奇数的等差中项,表示数列的前n项和.(1)求,,,,的值;(2)是否存在常数s,t,使得对一切且恒成立?若存在,求出s,t的值,并用数学归纳法证明;若不存在,请说明理由.22.(10分)已知函数.(1)判断的奇偶性并证明你的结论;(2)解不等式

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由线性回归直线恒过样本中心可判断①,由相关指数的值的大小与拟合效果的关系可判断②,由随机误差和方差的关系可判断③,由相关指数和相关系数的关系可判断④.【题目详解】①线性回归直线方程恒过样本中心,所以正确.②用相关指数可以刻画回归的效果,值越大说明模型的拟合效果越好,所以错误.③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;所以正确.④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方,所以正确.所以①③④正确.故选:C【题目点拨】本题考查线性回归直线方程和相关指数刻画回归效果、以及与相关系数的变形,属于基础题.2、D【解题分析】分析:先根据复数除法得,再根据复数的模求结果.详解:因为,所以,因此选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3、A【解题分析】

根据点是线段的中点,利用点差法求得直线的斜率及其方程;联立直线与双曲线得到点横坐标,联立直线与直线,得到点横坐标。由于,根据相似可得,又因为双曲线的对称性,,故,则,整理得到,进一步求得离心率。【题目详解】设点为,点为,中点为,则,根据点差法可得,即,双曲线的实轴长为4,直线为,,直线为.联立,得;联立,得又,根据相似可得双曲线的对称性,,,,,故选A【题目点拨】本题考察双曲线离心率问题,出现弦中点考虑点差法,面积比值可以利用相似转化为边的比值,以此简化计算4、B【解题分析】归直线y=bx+a②“x=6”是“x2③∃x0∈R,使得x02④“命题p∨q”为真命题,则“命题¬p∧¬q”当p,q都真时是假命题.不正确5、A【解题分析】

利用平方关系式消去参数可得即可得到答案.【题目详解】由可得,所以,化简得.故选:A【题目点拨】本题考查了参数方程化普通方程,考查了平方关系式,考查了圆的标准方程,属于基础题.6、A【解题分析】对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.7、C【解题分析】

利用正态分布的图像和性质求解即可.【题目详解】由题得,所以.故选:C【题目点拨】本题主要考查正态分布的图像和性质,考查指定概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、C【解题分析】

运用三角函数的辅助角公式和周期公式,可得a,,再由正弦函数的单调性和对称性,计算可得正确结论的个数.【题目详解】函数的最大值为,周期为,

可得,可得,可得,

则,

则,正确;

当,可得,

可得在上单调递减,正确;

由,则错误;

由,

可得正确.

其中正确结论的个数为1.

故选:C.

【题目点拨】本题考查三角函数的图象和性质,注意运用辅助角公式和周期公式,考查正弦函数的单调性和对称性,考查运算能力,属于中档题.9、B【解题分析】有由题意可得:,则(-2,3].本题选择B选项.10、D【解题分析】

求出切线的斜率即可【题目详解】由题意切线方程是x+y﹣8=0,即y=8﹣x,f'(5)就是切线的斜率,f′(5)=﹣1,故选:D.【题目点拨】本题考查了导数的几何意义,考查了某点处的切线斜率的求法,属于基础题.11、A【解题分析】本题考查空间线面关系的判定和性质.解答:命题①正确,符合面面垂直的判定定理.命题②不正确,缺少条件.命题③不正确,缺少两条相交直线都垂直的条件.命题④不正确,缺少两条相交直线的条件.12、B【解题分析】

首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx=【题目详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fxmax=【题目点拨】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

分析:基本事件总数,再利用列举法求出其中甲、乙二人抢到的金额之和不低于元的情况种数,能求出甲、乙二人抢到的金额之和不低于元的概率.详解:所发红包的总金额为元,被随机分配为元,元,元,元,元,共份,供甲、乙等人抢,每人只能抢一次,基本事件总数,其中甲、乙二人抢到的金额之和不低于元的情况有,种,甲、乙二人抢到的金额之和不低于元的概率,故答案为.点睛:本题考查古典概型概率公式的应用,属于简单题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.14、【解题分析】由题意可知,故答案为.15、【解题分析】分析:根据条件得到在和上单调,得到的关系式,进而即可求解.详解:若对于,存在唯一的,使得,所以函数在和上单调,则且,由,得,即,解得,所以.点睛:本题主要考查了分段函数的应用,以及函数的单调性的应用,其中根据题得出函数为单调函数,求得的关系式是解答本题的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力,属于中档试题.16、【解题分析】

直接利用二项分布公式得到答案.【题目详解】随机变量服从二项分布,则故答案为:【题目点拨】本题考查了二项分布的计算,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;(Ⅱ)解出命题中的不等式,由是的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围.【题目详解】(Ⅰ)由得,若,为真时实数t的取值范围是.由表示双曲线,得,即为真时实数的取值范围是.若为真,则真且真,所以实数t的取值范围是(Ⅱ)设,是的必要不充分条件,.当时,,有,解得;当时,,显然,不合题意.∴实数a的取值范围是.【题目点拨】本题第(1)问考查复合命题的真假与参数,第(2)问考查充分必要性与参数,一般要结合两条件之间的关系转化为集合间的包含关系,考查转化与化归数学思想,属于中等题.18、(1)前五强排名为:,,,,;(2)回归直线为:;预测年该超市奶粉的销量为罐.【解题分析】

(1)根据管状图,可求得五种奶粉两年的销量和,从而按照从多到少进行排列即可;(2)根据已知数据,利用最小二乘法求得回归直线;代入,即可求得预测值.【题目详解】(1)两年销量:;两年销量:;两年销量:;两年销量:;两年销量:前五强排名为:,,,,(2)由题意得:,;;,回归直线为:当时,预测年该超市奶粉的销量为:罐【题目点拨】本题考查统计图表的读取、最小二乘法求解回归直线、根据回归直线求解预估值的问题,考查运算和求解能力.19、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)对函数求导,再令x=1,可求得,回代可知,由导数可求得切线方程。(Ⅱ)由,令由导数可知,在时恒成立。下证,所以。【题目详解】(Ⅰ)函数的定义域为因为,所以,即,所以,,令,得,所以函数在点处的切线方程为,即.(Ⅱ)因为,令,则,因为,所以,所以在,上为减函数,又因为,所以,当时,,此时,;当时,,此时,,假设有最小值,则,即.若,当时,;若,当时,,所以,不存在正数,使.所以,当,且时,,所以,,解得:.【题目点拨】本题综合考查求函数表达式与求曲线在某点处的切线方程,及用分离参数法求参数范围。注意本题分离出的函数最小值取不到所以最后要取等号。20、(1)0.1.(2)0.2.【解题分析】

(1)P1=0.6(1-0.7)+(1-0.6)0.7=0.1.(2)P2=[0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论