2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题含解析_第1页
2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题含解析_第2页
2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题含解析_第3页
2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题含解析_第4页
2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏如皋市江安镇中心初中数学高二下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若命题:,,命题:,.则下列命题中是真命题的是()A. B. C. D.2.设是含数1的有限实数集,是定义在上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能值只能是().A.0 B. C. D.3.将点的极坐标化成直角坐标为()A. B. C. D.4.2021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:①样本中的女生更倾向于选历史;②样本中的男生更倾向于选物理;③样本中的男生和女生数量一样多;④样本中意向物理的学生数量多于意向历史的学生数量.根据两幅条形图的信息,可以判断上述结论正确的有()A.1个 B.2个 C.3个 D.4个5.已知下列说法:①对于线性回归方程,变量增加一个单位时,平均增加5个单位;②甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;③对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;④两个随机变量的线性相关性越强,则相关系数就越接近1.其中说法错误的个数为()A.1 B.2 C.3 D.46.设集合,若,则()A.1 B. C. D.-17.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则()A. B. C. D.8.设集合A={x|x>0},B={x|x2-5x-14<0},则A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}9.设集合,若,则()A. B. C. D.10.用数学归纳法证明“当为正奇数时,能被整除”,第二步归纳假设应该写成()A.假设当时,能被整除B.假设当时,能被整除C.假设当时,能被整除D.假设当时,能被整除11.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.63012.已知函数,若恰有两个不同的零点,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对于,,规定,集合,则中的元素的个数为__________.14.在正方体中,已知为的中点,则异面直线与所成角的余弦值为______.15.设随机变量服从正态分布,如果,则________.16.已知函数有两个极值点,,且,若存在满足等式,,且函数至多有两个零点,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了111名用户进行调查,得到如下数据:每周使用次数1次2次3次4次5次6次及以上男4337831女6544621合计1187111451认为每周使用超过3次的用户为“喜欢骑共享单车”.(1)分别估算男、女“喜欢骑共享单车”的概率;(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.不喜欢骑共享单车喜欢骑共享单车合计男女合计附表及公式:k2=nP(1.151.111.151.1251.1111.1151.111k2.1722.7163.8415.1246.6357.87911.82818.(12分)已知函数.(1)当时,若在上恒成立,求的取值范围;(2)当时,证明:.19.(12分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围.20.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知函数.(1)解不等式;(2)若的最小值为,正实数,满足,求的最小值.22.(10分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先判断命题p和q的真假,再判断选项得解.【题目详解】对于命题p,,所以命题p是假命题,所以是真命题;对于命题q,,,是真命题.所以是真命题.故选:C【题目点拨】本题主要考查复合命题的真假的判断,考查全称命题和特称命题的真假的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、C【解题分析】

先阅读理解题意,则问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,再结合函数的定义逐一检验即可.【题目详解】解:由题意可得:问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,则通过代入和赋值的方法,当时,此时得到圆心角为,然而此时或时,都有2个与之对应,根据函数的定义,自变量与应变量只能“一对一”或“多对一”,不能“一对多”,因此,只有当时,此时旋转,满足一个对应一个,所以的可能值只能是,故选:C.【题目点拨】本题考查了函数的定义,重点考查了函数的对应关系,属基础题.3、C【解题分析】

利用极坐标与直角坐标方程互化公式即可得出.【题目详解】x=cos,y=sin,可得点M的直角坐标为.故选:C.【题目点拨】本题考查了极坐标与直角坐标方程互化公式,考查了推理能力与计算能力,属于基础题.4、B【解题分析】

分析条形图,第一幅图从性别方面看选物理历史的人数的多少,第二幅图从选物理历史的人数上观察男女人数的多少,【题目详解】由图2知样本中的男生数量多于女生数量,由图1有物理意愿的学生数量多于有历史意愿的学生数量,样本中的男生更倾向物理,女生也更倾向物理,所以②④正确,故选:B.【题目点拨】本题考查条形图的认识,只要分清楚条形图中不同的颜色代表的意义即可判别.5、B【解题分析】

根据回归分析、独立性检验相关结论来对题中几个命题的真假进行判断。【题目详解】对于命题①,对于回归直线,变量增加一个单位时,平均减少个单位,命题①错误;对于命题②,相关指数越大,拟合效果越好,则模型甲的拟合效果更好,命题②正确;对于命题③,对分类变量与,随机变量的观测值越大,根据临界值表,则犯错误的概率就越小,则判断“与有关系”的把握程度越高,命题③正确;对于命题④,两个随机变量的线性相关性越强,则相关系的绝对值越接近于,命题④错误.故选:B.【题目点拨】本题考查回归分析、独立性检验相关概念的理解,意在考查学生对这些基础知识的理解和掌握情况,属于基础题。6、A【解题分析】

由得且,把代入二次方程求得,最后对的值进行检验.【题目详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【题目点拨】本题考查集合的交运算,注意求出参数的值后要记得检验.7、D【解题分析】

首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出.【题目详解】因为是有放回地取产品,所以每次取产品取到次品的概率为.从中取3次,为取得次品的次数,则,,选择D答案.【题目点拨】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.8、D【解题分析】试题分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考点:集合的运算.9、B【解题分析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.10、D【解题分析】注意n为正奇数,观察第一步取到1,即可推出第二步的假设.解:根据数学归纳法的证明步骤,注意n为奇数,所以第二步归纳假设应写成:假设n=2k-1(k∈N*)正确,再推n=2k+1正确;故选D.本题是基础题,不仅注意第二步的假设,还要使n=2k-1能取到1,是解好本题的关键.11、B【解题分析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.12、B【解题分析】分析:求出函数的导数,通过导数判定函数的单调性,从而得到的取值范围详解:令,则,令,在单调增,在单调减的取值范围为故选点睛:本题主要考查的是函数的零点问题,解决问题的关键是导数判断函数的单调性,然后通过数形结合的方法得到关于的范围二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】分析:由⊕的定义,ab=1分两类进行考虑:a和b一奇一偶,则ab=1;a和b同奇偶,则a+b=1.由a、b∈N*列出满足条件的所有可能情况,再考虑点(a,b)的个数即可详解:ab=1,a、b∈N*,若a和b一奇一偶,则ab=1,满足此条件的有1×1=3×12=4×9,故点(a,b)有6个;若a和b同奇偶,则a+b=1,满足此条件的有1+35=2+34=3+33=4+32=…=18+18共18组,故点(a,b)有35个,所以满足条件的个数为2个.故答案为2.点睛:本题考查的知识要点:列举法在排列组合中的应用,正确理解新定义的含义是解决本题的关键.14、【解题分析】

取中点,连接,根据四边形为平行四边形可得,从而可知所求角为;在中,利用余弦定理可求得,即为所求余弦值.【题目详解】取中点,连接分别为中点四边形为平行四边形与所成角即为与所成角,即设正方体棱长为,则,,即异面直线与所成角的余弦值为:本题正确结果:【题目点拨】本题考查异面直线所成角的求解,关键是能够通过平行关系将异面直线平移为相交直线,转变为相交直线所成角,从而将所求角放入三角形中来求解,属于常考题型.15、【解题分析】

根据随机变量符合正态分布和正态分布的曲线关于对称,得到一对对称区间的概率之间的关系,即可求得结果【题目详解】随机变量服从正态分布曲线关于直线对称故答案为【题目点拨】本题主要考查的知识点是正态分布,解题的关键是正态分布和正态分布的曲线关于对称,属于基础题。16、【解题分析】分析:首先确定的范围,然后结合函数的性质整理计算即可求得最终结果.详解:由可得:,由于,故,由可知函数的单调性与函数的单调性相同:在区间上单调递增,在区间上单调递减,在区间上单调递增,很明显是函数的一个零点,则满足题意时应有:,由韦达定理有:,其中,则:,整理可得:,由于,故,则.即实数的取值范围为.点睛:本题主要考查导函数研究函数的性质,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)男用户中“喜欢骑共享单车”的概率的估计值为911,女用户中“喜欢骑共享单车”的概率的估计值为23(2)填表见解析,没有【解题分析】

(1)利用古典概型的概率估算男、女“喜欢骑共享单车”的概率;(2)先完成2×2列联表,再利用独立性检验判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.【题目详解】解:(1)由调查数据可知,男用户中“喜欢骑共享单车”的比率为4555因此男用户中“喜欢骑共享单车”的概率的估计值为911女用户中“喜欢骑共享单车”的比率为3045因此女用户中“喜欢骑共享单车”的概率的估计值为23(2)由图中表格可得2×2列联表如下:不喜欢骑共享单车喜欢骑共享单车合计男114555女153145合计2575111将2×2列联表代入公式计算得:K所以没有95%的把握认为是否“喜欢骑共享单车”与性别有关.【题目点拨】本题主要考查古典概型的概率的计算,考查独立性检验,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)(2)见解析【解题分析】

(1)在上恒成立即在上恒成立,构造新函数求最值即可;(2)对x分类讨论,转证的最值与零的关系即可.【题目详解】解:(1)由,得在上恒成立.令,则.当时,;当时,,所以在上单调递减,在上单调递增.故的最小值为.所以,即的取值范围为.(2)因为,所以,.令,则.当时,,单调递减;当时,,单调递增.所以,即当时,,所以在上单调递减.又因为所以当时,当时,于是对恒成立.【题目点拨】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19、(1)(2)【解题分析】

(1)求出.利用导函数的符号判断函数的单调性然后求解最大值;(2)分情况:①在时,②在时,③在时,判断函数的单调性,求解函数的极值与0的关系,然后求解零点个数.【题目详解】(1)对求导数,.在时,为增函数,在时为减函数,∴,从而的最大值为.(2)①在时,在R上为增函数,且,故无零点.②在时,在R上单增,又,,故在R上只有一个零点.③在时,由可知在时有唯一极小值,.若,,无零点,若,,只有一个零点,若,,而.由(1)可知,在时为减函数,∴在时,,从而.∴在与上各有一个零点.综上讨论可知:时,有两个零点.【题目点拨】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,函数的零点个数的判断,是难题.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数,另一个是含自变量的函数,注意让含有自变量的函数式子尽量简单一些.20、(1);(2)【解题分析】

分析:(1)根据,列出关于首项,公比的方程组,解得、的值,即可得数列的通项公式;(2)由(1)可得,结合等比数列求和公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论