2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题含解析_第1页
2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题含解析_第2页
2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题含解析_第3页
2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题含解析_第4页
2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省寻甸县第五中学数学高二下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量x,y之间的线性回归方程为,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是()x681012y6m32A.变量x,y之间呈现负相关关系B.可以预测,当x=20时,y=﹣3.7C.m=4D.该回归直线必过点(9,4)2.某物体的位移(米)与时间(秒)的关系为,则该物体在时的瞬时速度是()A.米/秒 B.米/秒 C.米/秒 D.米/秒3.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元4.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.5.已知集合,集合,则A. B. C. D.6.若,则的最小值为()A.2 B.4 C.6 D.87.某运动队有男运动员4名,女运动员3名,若选派2人外出参加比赛,且至少有1名女运动员入选,则不同的选法共有()A.6种 B.12种 C.15种 D.21种8.已知函数,在区间内任取两个实数,,且,不等式恒成立,则实数的取值范围为()A. B. C. D.9.已知,那么()A.20 B.30 C.42 D.7210.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问111名不同的大学生是否爱好某项运动,利用列联表,由计算可得P(K2>k)

1.11

1.14

1.124

1.111

1.114

1.111

k

2.615

3.841

4.124

5.534

6.869

11.828

参照附表,得到的正确结论是()A.有8.4%以上的把握认为“爱好该项运动与性别无关”B.有8.4%以上的把握认为“爱好该项运动与性别有关”C.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别无关”11.已知随机变量服从二项分布,则().A. B. C. D.12.已知集合,则A. B.C. D.R二、填空题:本题共4小题,每小题5分,共20分。13.观察下面一组等式:,,,,根据上面等式猜测,则__________.14.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是______.15.如图,以长方体的顶底为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________16.对于实数、,“若,则或”为________命题(填“真”、“假”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中心在原点,焦点在轴上的椭圆过点,离心率为.(1)求椭圆的方程;(2)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;18.(12分)如图,三棱柱中,平面平面,,.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)被嘉定著名学者钱大昕赞誉为“国朝算学第一”的清朝数学家梅文鼎曾创造出一类“方灯体”,“灯者立方去其八角也”,如图所示,在棱长为的正方体中,点为棱上的四等分点.(1)求该方灯体的体积;(2)求直线和的所成角;(3)求直线和平面的所成角.20.(12分)甲、乙两班进行“一带一路”知识竞赛,每班出3人组成甲、乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是,设每人回答正确与否相互之间没有影响,用表示甲队总得分.(1)求的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.21.(12分)设等差数列的前项和为,且,.(1)求数列的通项公式;(2)设数列,求的前项和.22.(10分)设函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)讨论函数的单调性.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据回归直线方程的性质,以及应用,对选项进行逐一分析,即可进行选择.【题目详解】对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,故负相关.对于B:当x=20时,代入可得y=﹣3.7对于C:根据表中数据:9.可得4.即,解得:m=5.对于D:由线性回归方程一定过(),即(9,4).故选:C.【题目点拨】本题考查线性回归直线方程的性质,以及回归直线方程的应用,属综合基础题.2、B【解题分析】

根据导数的物理意义,求导后代入即可.【题目详解】由得:当时,即该物体在时的瞬时速度为:米/秒本题正确结果:【题目点拨】本题考查导数的物理意义,属于基础题.3、D【解题分析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.4、A【解题分析】

本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【题目详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【题目点拨】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.5、D【解题分析】,,则,选D.6、C【解题分析】

利用均值不等式求解即可.【题目详解】∵(当且仅当n=3时等号成立)故选:C.【题目点拨】本题主要考查了均值不等式求最值.注意把握好一定,二正,三相等的原则.7、C【解题分析】

先求出所有的方法数,再求出没有女生入选的方法数,相减可得至少有1位女生入选的方法数.【题目详解】解:从3位女生,4位男生中选2人参加比赛,所有的方法有种,

其中没有女生入选的方法有种,

故至少有1位女生入选的方法有21−6=15种.

故选:C.【题目点拨】本题主要考查排列组合的简单应用,属于中档题.8、A【解题分析】分析:首先,由的几何意义,得到直线的斜率,然后得到函数图象上在区间内任意两点连线的斜率大于1,从而得到在内恒成立,分离参数后,转化成在内恒成立,从而求解得到a的取值范围.详解:的几何意义为:表示点与点连线的斜率,实数,在区间,故和在区间内,不等式恒成立,函数图象上在区间内任意两点连线的斜率大于1,故函数的导数大于1在内恒成立,由函数的定义域知,在内恒成立,即在内恒成立,由于二次函数在上是单调增函数,故时,在上取最大值为15,.故选:A.点睛:本题重点考查导数的应用,函数的几何性质等知识,注意分离参数在求解中的灵活运用,属于中档题.9、B【解题分析】

通过计算n,代入计算得到答案.【题目详解】答案选B【题目点拨】本题考查了排列数和组合数的计算,属于简单题.10、B【解题分析】解:计算K2≈8.815>6.869,对照表中数据得出有1.114的几率说明这两个变量之间的关系是不可信的,即有1−1.114=8.4%的把握说明两个变量之间有关系,本题选择B选项.11、D【解题分析】表示做了次独立实验,每次试验成功概率为,则.选.12、D【解题分析】

先解出集合与,再利用集合的并集运算得出.【题目详解】,,,故选D.【题目点拨】本题考查集合的并集运算,在计算无限数集时,可利用数轴来强化理解,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由已知可得,因此,从而.点睛:归纳推理是通过观察个别情况发现某些相同本质,从已知相同本质中推出一个明确表述的一般性命题,本题是数的归纳,它包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系有关的知识,如等差数列、等比数列等.14、【解题分析】

根据题设条件得出是函数的最大值或最小值,从而得到,结合,最后得到,再根据正弦函数的单调性得到所求函数的单调增区间.【题目详解】解:若对恒成立,则等于函数的最大值或最小值,即,则,又,即令,此时,满足条件令,解得.则的单调递增区间是.故答案为:.【题目点拨】本题考查的重点是三角函数的单调区间以及形式变换,需要重点掌握.15、【解题分析】

根据的坐标,求的坐标,确定长方体的各边长度,再求的坐标.【题目详解】点的坐标是,,,,,故答案为:.【题目点拨】本题考查向量坐标的求法,意在考查基本概念和基础知识,属于简单题型.16、真【解题分析】

按反证法证明.【题目详解】假设命题的结论不正确,,那么结论的否定且正确,若且,则这与已知矛盾,原命题是真命题,即“若,则或”为真命题.故答案为:真【题目点拨】本题考查判断命题的真假,意在考查推理与证明,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)利用离心率,点在曲线上,列出的方程.(2)联立直线与椭圆方程根据韦达定理列出,的关系式,利用向量关系式,列出关于斜率的不等式,解出取值范围.详解:(1)设椭圆的方程为:,由已知:得:,,所以,椭圆的方程为:.(2)由题意,直线斜率存在,故设直线的方程为由得由即有即有解得综上:实数的取值范围为点睛:求参数的取值范围,最终落脚点在于计算直线与曲线的交点坐标的关系式.根据题目的条件,转化为,关系的式子是解题的关键.18、(Ⅰ)见解析;(Ⅱ)【解题分析】

(Ⅰ)如图做辅助线,D为AB中点,连,,由是等边三角形可知,,且,则是等边三角形,,故平面,平面,那么得证.(Ⅱ)建立空间直角坐标系以D为原点,先根据已知求平面的一个法向量,再求向量,设直线与平面所成的角为,则,计算即得.【题目详解】(Ⅰ)取中点,连,因为,所以,所以平面因为平面所以.(Ⅱ)以为坐标原点,建立如图所示的空间直角坐标系,可得,,,,设平面的一个法向量为则,而.所以.又,设直线与平面所成的角,则【题目点拨】本题考查两条直线的位置关系和立体几何中的向量方法,是常见考题.19、(1);(2);(3).【解题分析】

(1)计算出八个角(即八个三棱锥)的体积之和,然后利用正方体的体积减去这八个角的体积之和即可得出方灯体的体积;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用空间向量法求出直线和的所成角;(3)求出平面的法向量,利用空间向量法求出直线和平面的所成角的正弦值,由此可得出和平面的所成角的大小.【题目详解】(1)在棱长为的正方体中,点为棱上的四等分点,该方灯体的体积:;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,、、、,,,设直线和的所成角为,则,直线和的所成角为;(3),,,,设平面的法向量,则,得,取,得,设直线和平面的所成角为,则,直线和平面的所成角为.【题目点拨】本题考查多面体的体积、异面直线所成角、直线与平面所成角的计算,解题的关键就是建立空间直角坐标系,利用空间向量法进行计算,考查运算求解能力,属于中等题.20、(1);(2).【解题分析】

(1)ξ=2,则甲队有两人答对,一人答错,计算得到答案.(2)甲队和乙队得分之和为4,则甲可以得1,2,3分三种情况,计算其概率,再根据条件概率公式得到结果,【题目详解】(1)ξ=2,则甲队有两人答对,一人答错,故.(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分为η,则η~,,,,,,,∴所求概率为.【题目点拨】本题考查了概率的计算和条件概率,意在考查学生的计算能力.21、(1);(2).【解题分析】试题分析:(1)将已知条件转化为数列的首项和公差表示,通过解方程组可得到基本量的值,从而求得通项公式;(2)借助于(1)可求得的通项公式,结合特点利用列项求和法求和试题解析:(1)由已知有,则(2),则考点:数列求通项公式就和22、(Ⅰ);(Ⅱ)讨论见解析【解题分析】

(Ⅰ)利用导数的几何意义求解即可;(Ⅱ)分类讨论参数的范围,利用导数证明单调性即可.【题目详解】解:(Ⅰ)当时,所以.所以.所以曲线在点处的切线方程为.(Ⅱ)因为,所以.(1)当时,因为由得,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论