版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古平煤高级中学、元宝山一中数学高二下期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.2.已知满足约束条件,则的最大值为()A. B. C.3 D.-33.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C. D.4.两个线性相关变量x与y的统计数据如表:x99.51010.511y1110865其回归直线方程是,则相对应于点(11,5)的残差为()A.0.1 B.0.2 C.﹣0.1 D.﹣0.25.电脑芯片的生产工艺复杂,在某次生产试验中,得到组数据,,,,,.根据收集到的数据可知,由最小二乘法求得回归直线方程为,则()A. B. C. D.6.二项式的展开式中项的系数为,则()A.4 B.5 C.6 D.77.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”8.已知随机变量,若,则的值为()A.0.1 B.0.3 C.0.6 D.0.49.设为虚数单位,复数为纯虚数,则().A.2 B.-2 C. D.10.若函数在上有2个零点,则的取值范围为()A. B. C. D.11.若随机变量服从正态分布,则()参考数据:若,则,,A.0.84 B.0.9759 C.0.8185 D.0.682612.设向量与,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,之间的一组数据如表表示,关于的回归方程是,则等于______01243.9714.114.设随机变量,随机变量,若,则_________.15.,,若,则实数的值为_______.16.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中的二项式系数之和比各项系数之和大(1)求展开式所有的有理项;(2)求展开式中系数最大的项.18.(12分)某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是,每次参加科目B考试的成绩为合格的概率是,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.(1)求X的所有可能取的值;(2)求X的分布列和数学期望.19.(12分)已知点,椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.(Ⅰ)求的方程;(Ⅱ)设过点的直线与相交于,两点,求面积的取值范围.20.(12分)已知在中,角、、的对边分别是、、,且.(1)求角的大小;(2)若的面积,,,求的值.21.(12分)已知函数f(x)=ln|x|①当x≠0时,求函数y=g(x②若a>0,函数y=g(x)在0,+∞上的最小值是2,求③在②的条件下,求直线y=23x+22.(10分)甲、乙两位同学学生参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下:甲:7876749082乙:9070758580(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
设连线的中点为,再表示出动点的坐标,代入圆化简即可.【题目详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B【题目点拨】本题主要考查了轨迹方程的一般方法,属于基础题型.2、B【解题分析】
画出可行域,通过截距式可求得最大值.【题目详解】作出可行域,求得,,,通过截距式可知在点C取得最大值,于是.【题目点拨】本题主要考查简单线性规划问题,意在考查学生的转化能力和作图能力.目标函数主要有三种类型:“截距型”,“斜率型”,“距离型”,通过几何意义可得结果.3、C【解题分析】
试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C.考点:平面向量数量积的运算.4、B【解题分析】
求出样本中心,代入回归直线的方程,求得,得出回归直线的方程,令,解得,进而求解相应点的残差,得到答案.【题目详解】由题意,根据表中的数据,可得,把样本中心代入回归方程,即,解得,即回归直线的方程为,令,解得,所以相应点的残差为,故选B.【题目点拨】本题主要考查了回归直线方程的求解及应用,其中解答中正确求解回归直线的方程,利用回归直线的方程得出预测值是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解题分析】分析:根据回归直线方程经过的性质,可代入求得,进而求出的值.详解:由,且可知所以所以选D点睛:本题考查了回归直线方程的基本性质和简单的计算,属于简单题.6、C【解题分析】二项式的展开式的通项是,令得的系数是,因为的系数为,所以,即,解得:或,因为,所以,故选C.【考点定位】二项式定理.7、A【解题分析】
根据题意知观测值,对照临界值得出结论.【题目详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【题目点拨】本题考查了独立性检验的应用问题,是基础题.8、D【解题分析】
根据题意随机变量可知其正态分布曲线的对称轴,再根据正态分布曲线的对称性求解,即可得出答案.【题目详解】根据正态分布可知,故.故答案选D.【题目点拨】本题主要考查了根据正态分布曲线的性质求指定区间的概率.9、D【解题分析】
整理得:,由复数为纯虚数列方程即可得解.【题目详解】因为又它是纯虚数,所以,解得:故选D【题目点拨】本题主要考查了复数的除法运算,还考查了复数的相关概念,考查方程思想,属于基础题.10、D【解题分析】
先设,,则函数在上有2个零点等价于直线与函数的图像有两个交点,再求函数的单调性判断即可得解.【题目详解】解:由得,设,,则函数在上有2个零点等价于直线与函数的图像有两个交点,又,当时,;当时,.则函数在为增函数,在为减函数,∴,又,,又函数在上有2个零点,则的取值范围为.故选:D.【题目点拨】本题考查了导数的综合应用,重点考查了函数的零点个数与函数图像交点的个数问题,属基础题。11、A【解题分析】
根据题意可知,,所以,由公式即可求出.【题目详解】根据题意可知,,所以,故选A.【题目点拨】本题主要考查正态分布曲线的特点及曲线所表示的意义,意在考查数形结合思想,化归与转化思想的应用.12、B【解题分析】
利用列方程,解方程求得的值,进而求得的值.【题目详解】由于,所以,即,而,故,故选B.【题目点拨】本小题主要考查向量数量积的坐标运算,考查二倍角公式,考查特殊角的三角函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.6【解题分析】
根据表中数据,计算出,,代入到回归方程中,求出的值.【题目详解】根据表中数据,得到,,代入到回归方程中,得,解得.故答案为:.【题目点拨】本题考查线性回归方程过样本中心点,属于简单题.14、6【解题分析】因,故,即,则,又随机变量,所以,,应填答案。15、1【解题分析】
由题得,解方程即得的值.【题目详解】由题得,解之得=1.当=1时两直线平行.故答案为:116、540【解题分析】
首先将6个小队分成三组,有三种组合,然后再分配,即可求出结果.【题目详解】(1)若按照进行分配有种方案;(2)若按照进行分配有种方案;(3)若按照进行分配有种方案;由分类加法原理,所以共有种分配方案.【题目点拨】本题主要考查分类加法计数原理,以及排列组合的相关知识应用.易错点是平均分配有重复,注意消除重复.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
令可得展开式的各项系数之和,而展开式的二项式系数之和为,列方程可求的值及通项,(1)为整数,可得的值,进而可得展开式中所有的有理项;(2)假设第项最大,且为偶数,则,解出的值,进而可求得系数最大的项.【题目详解】解:令可得,展开式中各项系数之和为,而展开式中的二项式系数之和为,,,,(1)当为整数时,为有理项,则,所以展开式所有的有理项为:;(2)设第项最大,且为偶数则,解得:,所以展开式中系数最大的项为:.【题目点拨】本题主要考查了利用赋值法求解二项展开式的各项系数之和及展开式的二项式系数和的应用,二项展开式的通项的应用,属于基本知识的综合应用.18、(1)2,3,1(2)分布列见解析,【解题分析】
(1)的所有可能取的值是.(2)设表示事件“参加科目的第次考试的成绩为合格”,表示事件“参加科目的第次考试的成绩为合格”,且相互独立,利用相互独立与互斥事件的概率计算公式及其数学期望即可得出结果.【题目详解】解:(1)X的所有可能取的值是2,3,1.(2)设表示事件“参加科目A的第(,)次考试的成绩为合格”,表示事件“参加科目B的第(,)次考试的成绩为合格”,且,相互独立(,),那么,.,,.∴X的分布列为:X231p∴.故X的数学期望为.【题目点拨】本题考查了相互独立与互斥事件的概率计算公式及其数学期望,考查了推理能力与计算能力,属于中档题.19、(Ⅰ);(Ⅱ).【解题分析】分析:(1)根据题意得到关于a,c的方程组,解方程组得E的方程.(2)设:,先求,再求点到直线的距离,最后求,再利用基本不等式求面积的取值范围.详解:(Ⅰ)设,由条件知,,得,又,所以,,故的方程为.(Ⅱ)当轴时不合题意,故设:,,,将代入得,当,即时,,从而,又点到直线的距离,所以的面积,设,则,,因为,所以的面积的取值范围为.点睛:(1)本题主要考查椭圆的标准方程,考查直线和椭圆的位置关系,考查椭圆中面积的最值问题,意在考查学生对这些知识的掌握水平和分析推理能力基本计算能力.(2)解答本题的关键由两点,其一是求出,其二是先换元法再利用基本不等式求的面积的取值范围,设,得到.20、(1);(2).【解题分析】
(1)根据同角三角函数关系得到2(1﹣cos2A)﹣3cosA=0,解出角A的余弦值,进而得到角A;(2)根据三角形的面积公式和余弦定理得到a=,再结合正弦定理得到最终结果.【题目详解】(1)∵在△ABC中2sin2A+3cos(B+C)=0,∴2(1﹣cos2A)﹣3cosA=0,解得cosA=,或cosA=﹣2(舍去),∵0<A<π,∴A=;(2)∵△ABC的面积S=bcsinA=bc=5,∴bc=20,再由c=4可得b=5,故b+c=9,由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=21,∴a=,∴sinB+sinC∴sinB+sinC的值是.【题目点拨】这个题目考查了同角三角函数的化简求值,考查了三角形面积公式和正余弦定理的应用,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.21、(1)y=g(x)=x+ax;(2)【解题分析】⑴∵f(x∴当x>0时,f(x)=lnx∴当x>0时,f'(x)=1∴当x≠0时,函数y=g(x⑵∵由⑴知当x>0时,g(x∴当a>0,x>0时,g(x)≥2a∴函数y=g(x)在0,+∞上的最小值是2a,∴依题意得2⑶由y=23∴直线y=23x+=724-ln322、(I)茎叶图见解析;(II)甲.【解题分析】试题分析:(I)由图表给出的数据画出茎叶图;(II)根据公式求出两组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有关幼儿园防洪涝灾害应急预案(3篇)
- 领工资委托书
- 舞蹈培训班合作协议(3篇)
- 直播流程方案
- 门诊的年终总结
- 酒店员工述职报告汇编5篇
- 珍爱生命主题班会教案
- 23.5 位似图形 同步练习
- 江西上饶市2024-2025七年级历史期中试卷(含答案)
- 河北省秦皇岛市卢龙县2024-2025学年七年级上学期期中生物试题
- 民用爆炸品培训课件
- 民宿计划书及方案模板
- 港口行业经营分析
- 内分泌科利用PDCA循环提高全院胰岛素存放的合格率品管圈QCC成果汇报
- 贵州茅台酒厂招商实施方案
- 血栓性外痔护理课件
- 厌食病护理课件
- 招投标评分标准表
- 灭火器充装检修方案范本
- 新文科建设视角下微观经济学课程教学创新的实现路径
- JIT、QR与供应链管理课件
评论
0/150
提交评论