2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题含解析_第1页
2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题含解析_第2页
2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题含解析_第3页
2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题含解析_第4页
2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省徐州市睢宁县第一中学高二数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.同时具有性质“①最小正周期是”②图象关于对称;③在上是增函数的一个函数可以是()A. B.C. D.2.若展开式中只有第四项的系数最大,则展开式中有理项的项数为()A. B. C. D.3.设是可导函数,且满足,则曲线在点处的切线斜率为()A.4 B.-1 C.1 D.-44.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.6.已知函数,当时,不等式恒成立,则实数的取值范围为()A. B. C. D.7.某程序框图如图所示,该程序运行后输出的的值是()A.4 B.5 C.6 D.78.如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是()A. B. C. D.9.已知函数f(x)=x3-ax-1,若f(x)在(-1,1)上单调递减,则a的取值范围为()A.a≥3B.a>3C.a≤3D.a<310.已知,则()附:若,则,A.0.3174 B.0.1587 C.0.0456 D.0.022811.在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于()(参考公式:)A.2 B. C.4 D.12.函数f(x)=x3+ax2A.-3或3 B.3或-9 C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.在正数数列an中,a1=1,且点an,an-1n≥2在直线14.若曲线与曲线在上存在公共点,则的取值范围为15.已知是虚数单位,则复数的实部为______.16.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校20名同学的数学和英语成绩如下表所示:将这20名同学的两颗成绩绘制成散点图如图:根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)附:位同学的两科成绩的参考数据:参考公式:18.(12分)已知函数.(1)当时,解不等式;(2)关于x的不等式的解集包含区间,求a的取值范围.19.(12分)已知函数.(1)若函数在其定义域内单调递增,求实数的最大值;(2)若存在正实数对,使得当时,能成立,求实数的取值范围.20.(12分)如图,正四棱柱的底面边长,若与底面所成的角的正切值为.(1)求正四棱柱的体积;(2)求异面直线与所成的角的大小.21.(12分)小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.(分钟)15202530频数(次)50506040(Ⅰ)求小王上班在路上所用时间的数学期望;(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.22.(10分)已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

利用所给条件逐条验证,最小正周期是得出,把②③分别代入选项验证可得.【题目详解】把代入A选项可得,符合;把代入B选项可得,符合;把代入C选项可得,不符合,排除C;把代入D选项可得,不符合,排除D;当时,,此时为减函数;当时,,此时为增函数;故选B.【题目点拨】本题主要考查三角函数的图象和性质,侧重考查直观想象的核心素养.2、D【解题分析】

根据最大项系数可得的值,结合二项定理展开式的通项,即可得有理项及有理项的个数.【题目详解】展开式中只有第四项的系数最大,所以,则展开式通项为,因为,所以当时为有理项,所以有理项共有4项,故选:D.【题目点拨】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题.3、D【解题分析】

由已知条件推导得到f′(1)=-4,由此能求出曲线y=f(x)在(1,f(1))处切线的斜率.【题目详解】由,得,∴曲线在点处的切线斜率为-4,故选:D.【题目点拨】本题考查导数的几何意义及运算,求解问题的关键,在于对所给极限表达式进行变形,利用导数的几何意义求曲线上的点的切线斜率,属于基础题.4、A【解题分析】

,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【题目详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.【题目点拨】本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.5、B【解题分析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.6、A【解题分析】

令,由可知在上单调递增,从而可得在上恒成立;通过分离变量可得,令,利用导数可求得,从而可得,解不等式求得结果.【题目详解】由且得:令,可知在上单调递增在上恒成立,即:令,则时,,单调递减;时,,单调递增,解得:本题正确选项:【题目点拨】本题考查根据函数的单调性求解参数范围的问题,关键是能够将已知关系式变形为符合单调性的形式,从而通过构造函数将问题转化为导数大于等于零恒成立的问题;解决恒成立问题常用的方法为分离变量,将问题转化为参数与函数最值之间的大小关系比较的问题,属于常考题型.7、A【解题分析】

根据框图,模拟计算即可得出结果.【题目详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【题目点拨】本题主要考查了程序框图,循环结构,属于中档题.8、D【解题分析】

通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【题目详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【题目点拨】本题主要考查定积分求几何面积,几何概型的运算,难度中等.9、A【解题分析】∵f(x)=x3−ax−1,∴f′(x)=3x2−a,要使f(x)在(−1,1)上单调递减,则f′(x)⩽0在x∈(−1,1)上恒成立,则3x2−a⩽0,即a⩾3x2,在x∈(−1,1)上恒成立,在x∈(−1,1)上,3x2<3,即a⩾3,本题选择A选项.10、D【解题分析】

由随机变量,所以正态分布曲线关于对称,再利用原则,结合图象得到.【题目详解】因为,所以,所以,即,所以.选D.【题目点拨】本题主要考查正态分布曲线及原则,考查正态分布曲线图象的对称性.11、B【解题分析】

如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.则在中,有,再根据体积为可求及,在中,有,解出后可得正确的选项.【题目详解】如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.设底面正方形的边长为,正四棱锥的高为,则.因为该正四棱锥的侧棱长为,所以,即……①又因为正四棱锥的体积为4,所以……②由①得,代入②得,配凑得,,即,得或.因为,所以,再将代入①中,解得,所以,所以.在中,由勾股定理,得,即,解得,所以此球的半径等于.故选B.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.12、C【解题分析】

题意说明f'(1)=0,f(1)=7,由此可求得a,b【题目详解】f'(x)=3x∴f(1)=1+a+b+a2+a=7f'(1)=3+2a+b=0,解得a=3,b=-9时,f'(x)=3x2+6x-9=3(x-1)(x+3),当-3<x<1时,f'(x)<0,当x>1时,f'(x)>0a=-3,b=3时,f'(x)=3x2-6x+3=3∴a=3.故选C.【题目点拨】本题考查导数与极值,对于可导函数f(x),f'(x0)=0是x0为极值的必要条件,但不是充分条件,因此由二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.14、【解题分析】试题分析:根据题意,函数与函数在上有公共点,令得:设则由得:当时,,函数在区间上是减函数,当时,,函数在区间上是增函数,所以当时,函数在上有最小值所以.考点:求参数的取值范围.15、【解题分析】

直接利用复数代数形式的乘除运算化简得答案.【题目详解】,

复数的实部为1.

故答案为:1.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于容易题.16、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.

考点:1、线性规划的应用;2、利用基本不等式求最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、90分;分.【解题分析】

计算出剩下名学生的数学、英语成绩之和,于是求得平均分;可先计算出,再利用公式可计算出线性回归方程,代入学号为的同学成绩,即得答案.【题目详解】由题名学生的数学成绩之和为,英语成绩之和为取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和为其余名学生的英语成绩之和为其余名学生的数学平均分,英语平均分都为;不妨设取消的两名同学的两科成绩分别为数学成绩与英语成绩的线性回归方程代入学号为的同学成绩,得本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【题目点拨】本题主要考查平均数及方差,线性回归方程的相关计算,意在考查学生的转化能力,分析能力及运算技巧,难度中等.18、(1);(2)【解题分析】

(1)将代入中去绝对值后写为分段函数的形式,然后根据分别解不等式即可;(2)根据题意可知,恒成立,然后将问题转化对恒成立,令,再构造函数,,,根据解出的范围.【题目详解】解:(1),①当时,,解得,所以;②当时,,解得,所以;③当时,解得,所以.综上所述,不等式的解集为.(2)依题意得,恒成立,即,即,即,即.令,则,即,恒成立,即,构造函数,则解得.【题目点拨】本题考查了解绝对值不等式和不等式恒成立问题,考查了分类讨论思想和转化思想,考查了计算能力,属于中档题.19、(1)4(2)【解题分析】

(1)先求导,再根据导数和函数的单调性的关系即可求出的范围,(2)根据题意可得,因此原问题转化为存在正实数使得等式成立,构造函数,利用导数求出函数的值域,即可求出的取值范围.【题目详解】解析:(1)由题意得,函数在其定义域内单调递增,则在内恒成立,故.因为(等号成立当且仅当即)所以(经检验满足题目),所以实数的最大值为4.(2)由题意得,则,因此原问题转化为:存在正数使得等式成立.整理并分离得,记,要使得上面的方程有解,下面求的值域,,故在上是单调递减,在上单调递增,所以,又,故当,,综上所述,,即实数的取值范围为.【题目点拨】本题考查了函数的单调性、最值问题,考查导数的应用,考查转化思想,属于中档题.20、(1)(2)【解题分析】

(1)是与底面所成的角,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论