版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市茶陵县第二中学2024届数学高二第二学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列求导运算的正确是()A.为常数 B.C. D.2.已知函数,则的值为()A. B.1 C. D.03.已知复数,则其共轭复数对应的点在复平面上位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知椭圆的两个焦点为,且,弦过点,则的周长为()A. B. C. D.5.下列导数运算正确的是()A. B.C. D.6.如图所示的电路有a,b,c,d四个开关,每个开关断开与闭合的概率均为且是相互独立的,则灯泡甲亮的概率为()A. B. C. D.7.参数方程为参数表示什么曲线A.一个圆 B.一个半圆 C.一条射线 D.一条直线8.设随机变量X~N(0,1),已知,则()A.0.025 B.0.050C.0.950 D.0.9759.随机变量的分布列如下表,其中,,成等差数列,且,246则()A. B. C. D.10.复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.设离散型随机变量的概率分布列如表:1234则等于()A. B. C. D.12.已知函数存在零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若不等式有且只有1个正整数解,则实数a的取值范围是______.14.已知正数x,y满足,则的最小值为____________.15.幂函数的图像过点,则的减区间为__________.16.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是定义域为的奇函数,且当时,,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围.18.(12分)已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.19.(12分)已知a>0,a≠1,设p:函数y=loga(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图像与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.20.(12分)已知双曲线的右焦点是抛物线的焦点,直线与该抛物线相交于、两个不同的点,点是的中点,求(为坐标原点)的面积.21.(12分)已知函数.(1)求;(2)求的极值点.22.(10分)在中,己知(1)求的值;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据常用函数的求导公式.【题目详解】因为(为常数),,,,所以,选项B正确.【题目点拨】本题考查常用函数的导数计算.2、D【解题分析】
求出的导函数,代入即得答案.【题目详解】根据题意,,所以,故选D.【题目点拨】本题主要考查导函的四则运算,比较基础.3、D【解题分析】
先利用复数的乘法求出复数,再根据共轭复数的定义求出复数,即可得出复数在复平面内对应的点所处的象限.【题目详解】,,所以,复数在复平面对应的点的坐标为,位于第四象限,故选D.【题目点拨】本题考查复数的除法,考查共轭复数的概念与复数的几何意义,考查计算能力,属于基础题.4、D【解题分析】
求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【题目详解】由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故选D.【题目点拨】本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.5、B【解题分析】
由判断;由判断;由判断判断;由判断.【题目详解】根据题意,依次分析选项,对于,,错误;对于,,正确;对于,,错误;对于,,错误;故选B.【题目点拨】本题主要考查指数函数、对数函数与幂函数的求导公式以及导数乘法的运算法则,意在考查对基本公式与基本运算掌握的熟练程度,属于中档题.6、C【解题分析】
由独立事件同时发生的概率公式计算.把组成一个事整体,先计算它通路的概率.【题目详解】记通路为事件,则,所以灯泡亮的概率为.故选:C.【题目点拨】本题考查相互独立事件同时发生的概率,由独立事件的概率公式计算即可.7、C【解题分析】分析:消去参数t,把参数方程化为普通方程,即得该曲线表示的是什么图形.详解:参数方程为参数,消去参数t,把参数方程化为普通方程,,即,它表示端点为的一条射线.故选:C.点睛:本题考查了参数方程的应用问题,解题时应把参数方程化为普通方程,并且需要注意参数的取值范围,是基础题.8、C【解题分析】本题考查服从标准正态分布的随机变量的概率计算.,选C.9、A【解题分析】
根据a,b,c成等差数列,a+b+c=1,可解得a,b,c,进而求出.【题目详解】由,得.则,故选A.【题目点拨】本题考查根据随机变量X的分布列求概率,分析题目条件易求出.10、A【解题分析】
复数的共轭复数为,共轭复数在复平面内对应的点为.【题目详解】复数的共轭复数为,对应的点为,在第一象限.故选A.【题目点拨】本题考查共轭复数的概念,复数的几何意义.11、D【解题分析】分析:利用离散型随机变量X的概率分布列的性质求解.详解:由离散型随机变量X的分布列知:,解得.故选:D.点睛:本题考查概率的求法,是基础题,解题时要注意离散型随机变量X的概率分布列的性质的灵活应用.12、D【解题分析】
函数的零点就是方程的根,根据存在零点与方程根的关系,转化为两个函数交点问题,数形结合得到不等式,解得即可.【题目详解】函数存在零点,等价于方程有解,即有解,令,则,方程等价于与有交点,函数恒过定点(0,0),当时,与图象恒有交点,排除A,B,C选项;又当时,恰好满足时,,此时与图象恒有交点,符合题意;故选:D.【题目点拨】本题考查函数的零点与方程根的关系,此类问题通常将零点问题转化成函数交点问题,利用数形结合思想、分类讨论思想,求参数的范围,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
令(),求出,由导数研究函数的单调性,可得唯一的正整数解是什么,从而得出的范围.【题目详解】令(),则.当时,由得;由得;所以在单调递增,在单调递减,不合题意,舍去;当时,有,显然不成立;当时,由得;由得;所以在单调递减,在单调递增,依题意,需解得,故实数a的取值范围是.【题目点拨】本题考查不等式的正整数解,实质考查用导数研究函数的单调性.掌握用导数研究函数单调性的方法是解题关键.14、25【解题分析】
由+=1,得x+y=xy,+=+=13++=13+=9x+4y=(9x+4y)=13++≥13+2=25.当且仅当等号成立15、【解题分析】
设幂函数的解析式为,代入点,得到的值,得到的解析式和定义域,再写出的解析式,研究其定义域和单调区间,从而求出的减区间.【题目详解】设幂函数的解析式为代入点,得,所以所以幂函数为,定义域为,所以,则需要即其定义域为或,而的对称轴为所以其单调减区间为所以的减区间为.【题目点拨】本题考查求幂函数的解析式,求具体函数的单调区间,属于简单题.16、6【解题分析】
设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【题目详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【题目点拨】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)由已知可得,函数为上的奇函数、且为增函数,由命题为真,则,所以,从而解得;(2)由集合,若为真,则,因为“为假,为真”等价于“、一真一假”,因此若真假,则;若假真,则.从而可得,实数的取值范围是.试题解析:∵函数是奇函数,∴,∵当时,,∴函数为上的增函数,∵,,∴,∴,若为真,则,解得(2),若为真,则,∵为假,为真,∴、一真一假,若真假,则;若假真,则综上,实数的取值范围是考点:1.函数性质的应用;2.命题的真假判断及其逻辑运算.18、(Ⅰ)增区间为(1,),(-),减区间为(-1,1);(Ⅱ)最小值为,最大值为【解题分析】试题分析:(Ⅰ)首先求函数的导数,然后解和的解集;(Ⅱ)根据上一问的单调区间,确定函数的端点值域极值,其中最大值就是函数的最大值,最小的就是函数的最小值.试题解析:(Ⅰ)根据题意,由于因为>0,得到x>1,x<-1,故可知在上是增函数,在上是增函数,而则,故在上是减函数(Ⅱ)当时,在区间取到最小值为.当时,在区间取到最大值为.考点:导数的基本运用19、[,1)∪(,+∞).【解题分析】
先求出当命题p,q为真命题时的取值范围,由p∨q真,p∧q假可得p与q一真一假,由此可得关于的不等式组,解不等式组可得结论.【题目详解】当命题p为真,即函数y=loga(x+3)在(0,+∞)上单调递减时,可得.当命题q为真,即函数y=x2+(2a-3)x+1的图像与x轴交于不同的两点,可得,解得,又,所以当q为真命题时,有.∵p∨q为真,p∧q为假,∴p与q一真一假.①若p真q假,则,解得;②若p假q真,则,解得.综上可得或.∴实数a的取值范围是[,1)∪(,+∞).【题目点拨】根据命题的真假求参数的取值范围的步骤:(1)求出当命题p,q为真命题时所含参数的取值范围;(2)判断命题p,q的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解参数的取值范围.20、【解题分析】分析:由双曲线方程可得右焦点,即为抛物线的焦点,可得抛物线的方程,利用点差法得到直线的斜率为联立直线方程,可得y的二次方程,解得,利用割补法表示的面积为,带入即可得到结果.详解:∵双曲线的左焦点的坐标为∴的焦点坐标为,∴,因此抛物线的方程为设,,,则,∴∵为的中点,所以,故∴直线的方程为∵直线过点,∴,故直线的方程为,其与轴的交点为由得:,,∴的面积为.点睛:本题考查双曲线和抛物线的方程和性质,考查直线方程与抛物线的方程联立,考查了点差法,考查了利用割补思想表示面积,以及化简整理的运算能力,属于中档题.21、(1);(2)极大值点为,极小值点为.【解题分析】
(1)求出,将代入即可.(2)先在定义域内求出的值,再讨论满足的点附近的导数的符号的变化情况,来确定极值;【题目详解】解:(1)因为,所以.(2)的零点为或,当时,,所以在上单调递减;当时,,在,上单调递增,所以的极大值点为,极小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度法路往事房产中介佣金结算及房屋买卖合同
- 2025年度鲜蛋电商运营支持与数据服务合同
- 2025年度美容美甲行业国际交流与合作合同
- 家居装饰居间合同模板
- 畜牧养殖融资居间合同范例
- 软件开发外包合同及知识产权免责条款
- 电视节目制作及版权转让合同
- 明年春季企业间技术转让合同
- 企业劳务分包合同
- 医药研发成果转让与授权合同
- 江苏省苏州市2024-2025学年高三上学期1月期末生物试题(有答案)
- 销售与销售目标管理制度
- 2025年第一次工地开工会议主要议程开工大吉模板
- 第16课抗日战争课件-人教版高中历史必修一
- 对口升学语文模拟试卷(9)-江西省(解析版)
- 糖尿病高渗昏迷指南
- 壁垒加筑未来可期:2024年短保面包行业白皮书
- 环保局社会管理创新方案市环保局督察环保工作方案
- 2024至2030年中国水质监测系统行业市场调查分析及产业前景规划报告
- 运动技能学习
- 单侧双通道内镜下腰椎间盘摘除术手术护理配合1
评论
0/150
提交评论