2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题含解析_第1页
2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题含解析_第2页
2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题含解析_第3页
2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题含解析_第4页
2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省张家港市外国语学校数学高二下期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.2.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格.乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是()A.甲B.乙C.丙D.丁3.函数是定义在上的奇函数,当时,,则A. B. C. D.4.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为()A.6 B.7 C.8 D.95.曲线在点处的切线方程为()A. B. C. D.6.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与的关系为()A.外离 B.相交 C.相切 D.内含7.设,,都为大于零的常数,则的最小值为()。A. B. C. D.8.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.9.已知各项不为的等差数列,满足,数列是等比数列,且,则()A. B. C. D.10.已知满足,其中,则的最小值为()A. B. C. D.111.已知为等腰三角形,满足,,若为底上的动点,则A.有最大值 B.是定值 C.有最小值 D.是定值12.已知实数满足,则下列说法错误的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对于函数,若存在区间,当时,的值域为,则称为倍值函数.下列函数为2倍值函数的是__________(填上所有正确的序号).①②③④14.执行如图所示的流程图,则输出的值为_______.15.设函数,且函数为奇函数,则________.16.如果不等式的解集为,那么_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系中,已知椭圆的离心率为,且点在椭圆上.椭圆的左顶点为.(1)求椭圆的标准方程;(2)过点作直线与椭圆交于另一点.若直线交轴于点,且,求直线的斜率.18.(12分)甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区一模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:(1)计算,的值;(2)若规定考试成绩在为优秀,请根据样本估计乙校数学成绩的优秀率;(3)若规定考试成绩在内为优秀,由以上统计数据填写下面列联表,若按是否优秀来判断,是否有的把握认为两个学校的数学成绩有差异.附:,.19.(12分)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?20.(12分)某小区所有263户家庭人口数分组表示如下:家庭人口数12345678910家庭数20294850463619843(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);(2)写出他们家庭人口数的中位数(直接给出结果即可);(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)21.(12分)已知向量,,设函数.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,若,,△ABC的面积为,求a的值.22.(10分)在平面直角坐标系中,曲线C:,直线:,直线:以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的参数方程以及直线,的极坐标方程;(2)若直线与曲线C分别交于O、A两点,直线与曲线C交于O、B两点,求△AOB的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.2、A【解题分析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙,丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾,故甲预测错误.故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.3、D【解题分析】

利用奇函数的性质求出的值.【题目详解】由题得,故答案为:D【题目点拨】(1)本题主要考查奇函数的性质,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)奇函数f(-x)=-f(x).4、C【解题分析】

根据古典概型概率计算公式列出不等式,利用组合数公式进行计算,由此求得至少抽取的产品件数.【题目详解】设抽取件,次品全部检出的概率为,化简得,代入选项验证可知,当时,符合题意,故选C.【题目点拨】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题.5、C【解题分析】

求导,把分别代入导函数和原函数,得到斜率和切点,再计算切线方程.【题目详解】将代入导函数方程,得到将代入曲线方程,得到切点为:切线方程为:故答案选C【题目点拨】本题考查了曲线的切线,意在考查学生的计算能力.6、B【解题分析】

将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距,并将圆心距与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系.【题目详解】在曲线的极坐标方程两边同时乘以,得,化为普通方程得,即,则曲线是以点为圆心,以为半径的圆,同理可知,曲线的普通方程为,则曲线是以点为圆心,以为半径的圆,两圆圆心距为,,,,因此,曲线与相交,故选:B.【题目点拨】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.7、B【解题分析】

由于,乘以,然后展开由基本不等式求最值,即可求解.【题目详解】由题意,知,可得,则,所以当且仅当,即时,取等号,故选:B.【题目点拨】本题主要考查了利用基本不等式求最值问题,其中解答中根据题意给要求的式子乘以是解决问题的关键,着重考查了分析问题和解答问题的能力,属于中档题.8、B【解题分析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.9、B【解题分析】根据等差数列的性质得:,变为:,解得(舍去),所以,因为数列是等比数列,所以,故选B.10、C【解题分析】

令,利用导数可求得单调性,确定,进而得到结果.【题目详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【题目点拨】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.11、D【解题分析】

设是等腰三角形的高.将转化为,将转化为,代入数量积公式后,化简后可得出正确选项.【题目详解】设是等腰三角形的高,长度为.故.所以选D.【题目点拨】本小题主要考查向量的线性运算,考查向量的数量积运算,还考查了化归与转化的数学思想方法.属于基础题.12、A【解题分析】

设,证明单调递增,得到,构造函数根据单调性到正确,取,,则不成立,错误,得到答案.【题目详解】设,则恒成立,故单调递增,,即,即,.取,,则不成立,错误;设,则恒成立,单调递增,故,就,正确;同理可得:正确.故选:.【题目点拨】本题考查了根据函数的单调性比较式子大小,意在考查学生对于函数性质的综合应用.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解题分析】分析:为倍值函数等价于,的图象与有两个交点,且在上递增,由此逐一判断所给函数是否符合题意即可.详解:为倍值函数等价于,的图象与有两个交点,且在上递增:对于①,与,有两个交点,在上递增,值域为,①符合题意.对于②,与,有两个交点,在上递增,值域为,②符合题意.对于③,与,没有交点,不存在,,值域为,③不合题意.对于④,与两个交点,在上递增,值域为,④合题意,故答案为①②④.点睛:本题考查函数的单调性以及函数的图象与性质、新定义问题及数形结合思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.14、4【解题分析】

根据程序框图运行程序,直到满足,输出结果即可.【题目详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环;,,满足,输出结果:本题正确结果:【题目点拨】本题考查根据程序框图中的循环结构计算输出结果,属于常考题型.15、【解题分析】

根据奇函数求值.【题目详解】因为为奇函数令,故.【题目点拨】本题考查根据函数奇偶性求值,属于基础题.16、【解题分析】

根据一元二次不等式和一元二次方程的关系可知,和时方程的两个实数根,利用韦达定理求解.【题目详解】不等式的解集为的两个实数根是,,根据韦达定理可知,解得:,.故答案为:【题目点拨】本题考查一元二次方程和一元二次不等式的关系,意在考查计算能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由题意中椭圆离心率和点在椭圆上得到方程组即可求出椭圆方程(2)由题意设直线斜率,分别求出、的表达式,令其相等计算出直线斜率【题目详解】解:(1)由题意知:解得:,所以,所求椭圆方程为.(2)由题意知直线的斜率存在,设为,过点,则的方程为:,联立方程组,消去整理得:,令,由,得,将代入中,得到,所以,,由,得:,解得:,∴.所以直线的斜率为.【题目点拨】本题考查了求椭圆方程及直线与椭圆的位置关系,在解答过程中运用设而不求的方法,设出点坐标和斜率,联立直线方程与椭圆方程,结合弦长公式计算出长度,从而计算出结果,需要掌握解题方法18、(1),;(2);(3)有95﹪的把握认为两个学校数学成绩有差异【解题分析】

(1)由分层抽样的知识及题中所给数据分别计算出甲校与乙校抽取的人数,可得,的值;(2)计算样本的优秀率,可得乙校的优秀率;(3)补全列联表,计算出的值,对照临界表可得答案.【题目详解】解:(1)由题意知,甲校抽取人,则,乙校抽取人,则.(2)由题意知,乙校优秀率为.(3)填表如下表(1).甲校乙校总计优秀102030非优秀453075总计5550105根据题意,由题中数据得,有95﹪的把握认为两个学校数学成绩有差异.【题目点拨】本题主要考查了分层抽样及频率分布直方图的相关知识、独立性检验及其应用,属于中档题,注意运算准确.19、(Ⅰ)曲线C的方程为.(Ⅱ)时,.【解题分析】

(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(Ⅱ)设,其坐标满足消去y并整理得,故.,即.而,于是.所以时,,故.当时,,.,而,所以.【题目详解】请在此输入详解!20、(1);(2);(3)平均数4.30人,方差【解题分析】

(1)根据方差的计算公式可得结果;(2)根据中位数的概念可得结果;(3)根据平均数与标准差的公式计算即可.【题目详解】解:(1)由方差的计算公式得:人口数方差为;(2)263户家庭,则中位数为第户家庭的人口数,,,所以中位数为4;(3)平均数:,标准差:【题目点拨】本题考查平均数,标准差,中位数的计算,是基础题.21、(1),;(2).【解题分析】试题分析:(1)由两向量的坐标,利用平面向量的数量积运算列出解析式,化简后利用周期公式求出最小正周期;利用正弦函数的单调性确定出递增区间即可;

(2)由,,根据解析式求出的度数,利用三角形面积公式列出关系式,将b,及已知面积代入求出的值,再利用余弦定理即可求出的值.试题解析:(1)∵,,∴∴令(),∴()∴的单调区间为,(2)由得,,∴又∵为的内角,∴,∴,∴∵,,∴,∴∴,∴.【题目点拨】此题考查了余弦定理,平面向量的数量积运算,正弦函数的单调性,以及三角形的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论